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ABSTRACT

Transportation infrastructure is vulnerable to extreme weather events. Vulnerability

is prominent at maritime ports, where tropical cyclones frequently halt operations

and force firms to adapt to transportation disruptions. I quantify these responses by

linking high-frequency maritime shipment data to tropical cyclone tracks. Exposure

to tropical cyclones temporarily disrupts port activities (≈1–2 weeks), prompting

firms to adjust route choices along transportation networks (rerouting), even after

ports resume operations (≈2–6 months). To evaluate the general equilibrium im-

plications of these weather disruptions, I develop a quantitative model of spatial

production networks with endogenous routing. Structural estimation reveals that

maritime transportation costs decrease with port capacity (scale), but increase with

port traffic (congestion) and cyclone risk. Investigating future climate hazards to

the transportation network, I find that rerouting is a key adaptation mechanism that

prevents global welfare losses. To translate evidence into policy, I derive model-

based sufficient statistics for evaluating and targeting future port investments in

light of climate change. Allocation rules that ignore weather risk and firms’ adap-

tive responses systematically misallocate investment.

*University of Bologna, Department of Economics. Email: hubert.massoni2@unibo.it. I am grate-
ful to Emanuele Campiglio and Bruno Conte for their guidance and support. This paper benefited
from conversations with Jeanne Astier, Clare Balboni, Johannes Boehm, Mathieu Couttenier, Pierre
Coster, Alejandro Graziano, Vasily Korovkin, Isabelle Méjean, David Nagy, Giacomo Oppocher, Gi-
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1 INTRODUCTION

Transportation infrastructure is the backbone of international trade and attracts large

investments to improve efficiency and resilience. Yet, infrastructure is particularly

vulnerable to extreme weather. Maritime ports – channeling more than 80% of global

trade volumes – exemplify this risk through their exposure to storm surge, high winds,

and flooding. Weather hazards threaten not only the physical infrastructure of ports

but also the trade flows that depend on them.1 Escalating climate risk raises concerns

about the resilience of transportation networks, and the trade they carry.

Weather-related disruptions expose firms to shipping bottlenecks, delays, and un-

certainty (Blaum et al., 2024). Firms can reduce exposure to disrupted ports by di-

verting away from risky infrastructure or from suppliers that rely on it. However,

these private responses can also amplify disruptions by inducing congestion spillovers

along alternative routes (Allen and Arkolakis, 2022; Brancaccio et al., 2024). Account-

ing for such endogenous rerouting is crucial for evaluating returns to port investment,

given that transportation costs have general equilibrium effects on the spatial distri-

bution of economic activity (Allen et al., 2025; Redding and Turner, 2015).

In this paper, I study firms’ adaptation margins to transport-related climate risks

and their impacts on the economy. First, using shipment-level maritime trade data

linked to port operations and tropical cyclone exposure, I show that weather shocks

disrupt port activity and prompt firm-level rerouting that preserves supply relation-

ships. Second, to quantify the general-equilibrium impacts of future climate risks

to port infrastructure, I develop a novel model of spatial production networks that

captures complex routing decisions and the congestion spillovers they induce across

transportation networks. Third, to evaluate public investment in ports, I develop

a normative, sufficient-statistics framework that links port improvements to welfare

while accounting for firms’ responses and weather risk.

I measure firms’ responses to transportation shocks by combining Brazilian admin-

istrative maritime trade data (bills of lading) with detailed micro-spatial information

on tropical cyclones and daily global port operations. The data cover the universe of

1Studying 1,340 ports globally, Verschuur et al. (2023b) find that 86% of ports are exposed to more
than three weather-related hazards. About one-third of this risk is attributable to tropical cyclones,
exposing USD 63 billion in trade annually.
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Brazilian imports from 2014 to 2023 at the shipment level. Bills of lading contain in-

formation on shipment characteristics, on each trading firm, and on the ports used to

ship the goods. Tropical cyclones provide plausibly exogenous weather shocks to in-

fer firm-level adaptation margins.2 I investigate the effect of these weather shocks on

port activity and the responses of Brazilian firms to foreign transportation disruptions

– i.e., shocks to the shipment’s port of origin.3

I exploit a stacked difference-in-differences design (Cengiz et al., 2019; Deshpande

and Li, 2019) to provide novel empirical evidence that port exposure to tropical cy-

clones prompts rerouting decisions – a mechanism that dampens firm-to-firm trade

disruptions. Using quasi-random variation in cyclone exposure across ports, I first

show that tropical cyclones temporarily disrupt the operations of maritime ports, on

average for 12 days around the cyclone’s landfall.4 Second, I use shipment-level data

to examine private adaptation through rerouting. Leveraging variation in port expo-

sure to cyclones across the set of ports used by a pair of firms, I find that these disrup-

tions induce a two-month rerouting away from exposed ports, relative to unexposed

ports. This response is magnified (up to six months of rerouting) when the treatment

is the first experienced by the relationship, suggesting a learning behavior along the

treatment history. Third, aggregating shipment data at the firm-to-firm level, I show

that the cyclone events are not disruptive enough to sever buyer-supplier links: I ob-

serve only a short-lived decline in relationship activity. Overall, the evidence indicates

that the principal adaptation margin is routing rather than sourcing.

To investigate the welfare impacts of these adaptation margins in the context of

climate change, I develop a static model of spatial production networks with endoge-

nous trade costs affected by weather disruptions. Informed by the empirical evidence,

the model accounts for private decisions: firms reroute trade toward safer routes in

response to weather risk. However, such routing responses can affect other parts of

the transportation network if congestion spillovers raise the costs of using alterna-

2Although tropical cyclones are concentrated within well-defined storm seasons and broad geo-
graphic areas, the exact location, timing, and intensity of the events remain unpredictable (Hsiang and
Jina, 2014).

3In the sample I consider, no Brazilian port is exposed to tropical cyclones. Brazil’s coastal regions
lie near the equator, where sea surface temperatures are relatively stable and the Coriolis force is weak
– tropical cyclones rarely form or intensify in this region.

4Since port authorities forecast cyclones’ trajectories and intensities, port downtime can precede
landfall. I use precautionary thresholds from Coast Guard authorities to inform my definition of a
port-level shock. See Section 3.1.
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tive routes. In the model, firms located across regions require intermediate inputs

to produce final goods. They make joint sourcing and routing decisions based on

factory-gate and transportation costs to find the most cost-effective supplier and de-

livery route. Road transportation is allowed when regions are directly connected by

land, and maritime transportation is allowed when both regions have port infrastruc-

ture. Shipping through ports entails additional transportation costs related to port

traffic and weather risks, which are alleviated by port capacity.

To quantify how congestion, port capacity, and local weather shape firms’ sourc-

ing–routing decisions, I parametrize transportation costs and structurally estimate

their components using Brazilian microdata linked to information on port operations

and cyclone risk. I address endogeneity in port traffic and capacity using a novel set

of geography-based instruments. For port traffic, I use global container throughput

interacted with each port’s 1950 coastal-population share – a predetermined demand

shifter that scales common traffic shocks across ports while leaving local handling

costs unchanged. For port capacity, I use mean terrain ruggedness around ports –

a geologic supply determinant that raises inland evacuation costs and limits optimal

capacity, yet remains exogenous to current trade flows. Estimation confirms three

predictions of the model: (i) port-level traffic leads to congestion and increases trans-

portation costs; (ii) this congestion is alleviated by port capacity; and (iii) transporta-

tion costs are affected by wind conditions around ports. A 1% increase in cyclone risk

at the port level raises transportation costs by 0.01%.

I calibrate the model at the subnational level for the global economy and use prob-

abilistic projections of tropical cyclones to infer future weather risk at ports under an

unmitigated climate change scenario.5 The model quantifies the distributional impacts

of these climate-related risks on maritime traffic and regional welfare. Aggregate wel-

fare is virtually unaffected (+0.005 basis points) but masks stark spatial heterogeneity:

the 5th and 95th percentiles of welfare changes are −0.47 and +0.12 basis points, re-

spectively. Aggregate port traffic, however, declines by 0.26%, reflecting the combined

effects of increased weather risks and congestion spillovers. I further show that rerout-

ing is a key adaptation mechanism that prevents larger declines in global maritime
5I rely on model-based quantification and counterfactual exercises to address the impacts of climate

change. While the reduced-form evidence I propose captures firms’ responses to individual weather
events, the maritime shipments data cover only ten years and therefore do not allow observing a distri-
butional shift in weather risk – a key feature of climate change.
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traffic and averts global welfare losses. When routing is held fixed at baseline, aggre-

gate welfare declines by 0.04 basis points, while maritime traffic declines by 4.4%.

I finally explore infrastructure policy and how future climate risks can affect in-

frastructure investment patterns. To address the high dimensionality of an optimal

infrastructure improvement problem, I propose a computationally tractable sufficient-

statistics approach to recover first-order welfare gains from port capacity improve-

ments. I express marginal welfare gains from port capacity as a function of general-

equilibrium objects, accounting for adjustments in both production and transportation

networks, and port-level weather risk. These sufficient statistics allow me to evaluate

the desirability of capacity improvements at specific ports and to quantify how ignor-

ing future climate-related risks may lead to misallocation of infrastructure investment.

In the case of global port investments, when the allocation rule is proportional to port-

level global welfare gains – a first-order allocation rule – I estimate that not accounting

for future climate at ports can lead to a 2.3% misallocation of port-capacity invest-

ment.6

To further demonstrate the use of the sufficient-statistics approach for port invest-

ment allocation, I use evidence that EU27 ports plan roughly USD 93 billion in invest-

ments by 2034 (ESPO, 2024). I construct a counterfactual that allocates this aggregate

budget across 110 EU ports in proportion to each port’s EU27 first-order welfare gains.

Incorporating future climate shifts these gains, and thus the first-order investment al-

location rule. To translate spending into capacity, I map investment dollars into port

capacity using an elasticity estimated from World Bank PPI projects. Comparing an

allocation guided by the current climate with one guided by an RCP8.5 climate yields

a 0.5% misallocation of the USD 93 billion. This results in aggregate EU welfare losses

of −0.04 basis points and leaves nearly all EU ports with lower traffic.

Related Literature. This paper connects three strands of research. First, it relates to

the growing literature on how natural disasters and extreme weather affect produc-

tion networks (Barrot and Sauvagnat, 2016; Boehm et al., 2019; Carvalho et al., 2021;

Pankratz and Schiller, 2021; Rabano and Rosas, 2024). Both the empirical and theo-

retical exercises I undertake are most closely related to recent work studying firms’

responses to climate risks: Balboni et al. (2024) and Castro-Vincenzi et al. (2024) doc-
6Misallocation refers to the share of aggregate investment which should be reallocated from low-

welfare-improving to high-welfare-improving ports.
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ument flood impacts on domestic supply chains and firms’ adaptive responses, while

Martinez (2024), Blaum et al. (2024), and Clark et al. (2024) explicitly address weather

disruptions to transportation and their effects on firms’ sourcing choices.7 Building

on the insight that firms incorporate climate risks when making sourcing decisions, I

reinterpret private adaptation through the lens of transportation–linked disruptions. I

foreground an additional margin – rerouting – and show how these private decisions

generate congestion spillovers that justify a role for infrastructure policy.

Second, the paper contributes to the literature on transportation costs and infras-

tructure as determinants of economic activity. A subset of this literature studies the

welfare consequences of traffic congestion (Brancaccio et al., 2020; Fajgelbaum and

Schaal, 2020; Allen and Arkolakis, 2022). I draw on the framework of Allen and Arko-

lakis (2022) and incorporate an optimal transportation problem – where firms select bi-

lateral least–cost routes – into a model of spatial production networks. Closely related,

Ganapati et al. (2024) introduce increasing returns in maritime traffic, and Wong and

Fuchs (2022) study multimodal networks. I extend this class of models by introducing

infrastructure–level operating costs and capacity constraints that endogenously shape

congestion (Ducruet et al., 2024; Brancaccio et al., 2024). This modeling choice delivers

precise traffic predictions at the node level (ports), rather than at the link level (shipping

lanes). This distinction is particularly relevant for maritime trade, where bottlenecks

arise primarily at terminals (and a few chokepoints), while open–sea lanes rarely bind.

In addition, the sufficient–statistics approach I develop brings climate risk into the

welfare analysis of infrastructure policy (Allen et al., 2025). This approach preserves

the discipline of the routing structure, delivers transparent comparative statics for fu-

ture climates, and scales to large transportation networks where full planner solutions

are computationally prohibitive.

Finally, this study relates to the broader literature on the spatial consequences of cli-

mate change (Bilal and Rossi-Hansberg, 2023; Desmet and Rossi-Hansberg, 2015; Cruz

and Rossi-Hansberg, 2024; Rudik et al., 2021). Rather than viewing trade frictions as

merely constraining climate–induced geographic reallocation, I highlight that climate

damage can propagate across space through transportation networks, generating in-
7Balboni et al. (2024) also consider flood–induced road disruptions and subsequent firms’ responses

using GPS tracker data from commercial trucks. Their quantitative framework, however, does not
model disaster–driven changes in transportation costs nor the spillovers those shocks generate across
the broader transport network.
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direct losses in otherwise less–exposed regions via rerouting and congestion. This has

implications for infrastructure policy because local shocks can trigger network–wide

externalities at critical nodes. Related work studies the spatial allocation of infrastruc-

ture under climate risk, including the costs of maintaining coastal cities (Desmet et al.,

2021; Balboni, 2025). I propose a complementary perspective: assessments of where

to expand infrastructure must internalize firms’ routing responses. Rerouting can re-

shape the spatial propagation of local shocks by diverting trade flows, and infrastruc-

ture investments should be designed to support these adjustments while managing

congestion externalities.

The rest of the paper proceeds as follows. Section 2 describes the data. Section 3

provides empirical evidence on firms’ responses to weather-related transportation dis-

ruptions. Section 4 incorporates these responses into a theoretical model of production-

network formation with traffic congestion and weather-dependent transportation costs.

Section 5 details the model’s parameterization and calibration. Section 6 presents

quantitative results under climate-change scenarios. Section 7 studies infrastructure

policy. Section 8 concludes.

2 DATA

In this section, I describe the main data sources used in the paper. In the empirical

analysis, I study Brazilian firms’ responses to global transportation shocks. I there-

fore combine Brazilian maritime trade data with global port-level information, histori-

cal tropical cyclone tracks, and tropical cyclone climate data. Appendix B provides a

comprehensive review of data sources and processing – including additional data for

model quantification at the global level.

Firm-to-firm shipments. I study firm-to-firm relationships and trading routes using

bill of lading data assembled by S&P Panjiva.8 The dataset encompasses the universe

of maritime import transactions conducted by Brazilian firms between June 2014 and

December 2023. Each shipment entry includes the company names of both the Brazil-

ian importer and the foreign exporter. Geographic details – such as street address,

city, postal code, and country – are recorded for each trading party, allowing precise

8A bill of lading is a document issued by a carrier to acknowledge receipt or shipment of cargo. It
typically contains information on the cargo’s origin, destination, quantity, packaging, shipping details,
and description.
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geocoding of shipment origins and destinations. The data also record the maritime

ports of loading (origin) and unloading (destination) for each shipment, enabling the

reconstruction of trading routes. For each transaction, an indicator specifies whether

the goods were containerized. The dataset includes the weight, volume, and current

US dollar value of each shipment. It also reports whether the trading parties owned

the cargo or acted as forwarders – i.e., third parties transporting the goods.

I perform a series of steps to clean the data and remove incomplete shipment in-

formation. I refer to geolocated establishments belonging to an identified parent com-

pany as firms.9 First, I remove all shipments with missing parent company names or

port IDs, since I cannot identify the trading parties or routes. Second, I drop from the

sample all firms that are not geolocated at the city or postal code level. Third, I restrict

attention to shipments where both parties are declared the real owners of the cargo,

thereby excluding warehouses and transportation companies.10 Fourth, I remove all

importers not geolocated in Brazil and all exporters geolocated in Brazil.

Throughout the empirical section, I denote Brazilian importers as buyers (indexed

by b), foreign exporters as suppliers (indexed by s), and buyer–supplier pairs {b, s}

as relationships. Based on the geographic coordinates of establishments, I assign to

each supplier and buyer their location at the subnational level (or region in Section 4),

denoted no for the origin location and nd for the destination location, respectively.11

When shipments transit from a port of origin po to a port of destination pd, I denote

the quadruplet {no,nd, po, pd} as a route (indexed by r). The set of routes used by

relationship (b, s) is denoted Rbs. The baseline sample contains 1,039,012 shipments

from 23,291 suppliers to 17,692 buyers, across 1,822 routes. Appendix B.1 describes the

sampling procedure and provides summary statistics on firm-to-firm trade. Figure 1a

presents the geographic distribution of firms in the sample.

Global port-level traffic. To measure global port-level traffic, I use daily indicators

of port activity provided by IMF PortWatch. The data include daily counts of port

9To address frequent typos in company names and geographic details, I clean the name strings and
assign a single firm ID to all establishments sharing the same parent company name and geolocated
within a 10 km radius.

10Although third parties are likely to influence traffic at ports through routing decisions, they are
not relevant for studying firm-to-firm relationships, as the data do not link these shipments to the
production-oriented firms trading the goods.

11I map firms to the Global Administrative Unit Layers (GAUL), a set of administrative units with
global coverage created by the Food and Agriculture Organization (FAO). I use GAUL1 administrative
units – the first administrative layer within a country’s structure (e.g., states in the US).
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(a) Location of trading firms (b) Maritime routes

Notes: Panel 1a maps the locations of firms in the baseline sample. Each dot represents a firm: red
dots denote foreign suppliers (n = 23,291), and blue dots denote Brazilian buyers (n = 17,692). Panel
1b maps the locations of ports and the corresponding active maritime routes in the sample. Each dot
represents a port: red dots indicate foreign ports of origin (n = 442), and blue dots indicate Brazilian
ports of destination (n = 42). Lines represent active routes (n = 1,822). I plot the shortest sea routes –
computed using the Eurostat SeaRoute program – as a proxy for maritime routes, and exclude inland
waterway routes.

Figure 1: Firms, Ports, and Routes

calls and estimates of import and export volumes, disaggregated by ship type (e.g.,

container, dry bulk), for 1,666 global ports from 2019 to 2023.12 I match 621 ports by

name to those in the Brazilian bill of lading data and use the daily port-level aggregates

of imported and exported volumes – expressed in twenty-foot equivalent units (TEU) –

as a proxy for port traffic.13

Tropical cyclone tracks. I obtain information on tropical cyclones from the IBTrACS

(International Best Track Archive for Climate Stewardship) database (Knapp et al.,

2010). This database provides a comprehensive record of tropical storms and cyclones

since 1841. It contains detailed characteristics of storm systems’ positions and inten-

sities, with a temporal resolution of 3 hours and a spatial resolution of 0.1◦. I focus

on all cyclones that occurred from 2014 to 2023 within a 200 km buffer zone around

global coastlines. Figure 2a maps the tropical cyclone events in the sample, along with

the sustained wind speeds (in meters per second) experienced along their paths. Ap-

pendix B.3 describes the data in detail and provides summary statistics on cyclone

wind profiles at ports.

12The port-level data (2019–2023) do not cover the entire timeframe of the Brazilian bill of lading data
(2014–2023). I therefore use them (i) to verify that tropical cyclones affect port operations (Section 3.2)
and (ii) to calibrate transportation costs based on 2019–2023 data (Section 5.1).

13TEU (twenty-foot equivalent unit) is a standard measure of container capacity. Data are down-
loaded from IMF PortWatch. The data are based on raw AIS data from the United Nations Global
Platform. Port-level daily estimates are calculated by the PortWatch team, following the methodology
described in Arslanalp et al. (2021).
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(a) Tropical Cyclones Tracks (2014-2023) (b) ∆ Tropical Cyclone Wind Speed (RCP8.5)

Notes: Panel 2a shows the paths of all tropical cyclones recorded from 2014 to 2023 within a 200 km
buffer zone around global coastlines. Wind speeds (m/s) correspond to the storm center (eye) and are
reported at a 3-hour temporal resolution (IBTrACS). Panel 2b shows the change in expected wind speed
induced by tropical cyclones, comparing the present-day scenario (1980–2015) with the RCP8.5 future
scenario (2015–2050). Estimates are based on 10,000 years of synthetic storm tracks from the STORM
model, with wind speeds weighted by the inverse of their return periods.

Figure 2: Tropical Cyclones: Historical Tracks and Future RCP8.5 Projections

Tropical cyclone climate. I obtain port-level current and future tropical cyclone cli-

mate data from the STORM model (Bloemendaal et al., 2020a,b). The data report max-

imum wind speeds (meters per second) for a fixed set of return periods, derived from

10,000 years of synthetic tropical cyclone tracks under a present-day climate scenario

(1980–2015) and a future climate scenario (2015–2050, RCP8.5/SSP5), at a spatial res-

olution of 10 km. I calculate the expected wind speed in each 2◦ grid cell as the sum

of maximum sustained wind speeds weighted by the inverse of their return periods

(i.e., their probabilities of occurrence over 10,000 years). Appendix B.4 describes the

data in detail. Figure 2b maps the global change in expected wind speed from tropical

cyclones. Figures B.2a and B.2b report the raw data.

3 EMPIRICAL EVIDENCE

In this section, I investigate the disruptions caused by port exposure to tropical cy-

clones at the port and firm-to-firm levels. I first show that tropical cyclones induce

a short but severe disruption to port operations. I then document that firms reroute

shipments to avoid ports’ operational shutdowns. Such rerouting mechanisms pre-

vent larger disruptions at the firm-to-firm level.
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3.1 EMPIRICAL STRATEGY

Measuring port exposure to cyclones. Tropical cyclones may affect the operations of

maritime ports in several ways (Verschuur et al., 2023a). Port infrastructure is at risk

of damage from heavy rain, floods, and intense winds. To prevent the risk of infras-

tructure damage upon the arrival of a tropical cyclone, ports can suspend operations

– i.e., restrict vessels from entering the port, partially or completely – as a means to

ensure the safety of port infrastructure and prevent vessel damage.14 While the safety

guidelines vary across ports and countries, most Coast Guard authorities restrict port

operations around the threshold of 34–35 knots of expected wind speed (sustained

gale), or approximately 18 meters per second.15 Flynn (2023) refers to this zone of

precaution as the 34-knot ship avoidance area.

Exhaustive information on the closure of ports exposed to tropical cyclones is not

easily accessible, nor is data on the actual wind speeds experienced around ports dur-

ing cyclone events. I therefore proxy disruptive tropical cyclone events by modeling

the wind speed experienced around port locations.16 The input to this cyclone profile

simulation method is the IBTrACS data described in Section 2. The output is a vec-

tor of cyclone characteristics at the port level, including the maximum sustained wind

speed experienced at each port during the event. Figure B.1 provides an example of

the cyclone profile modeling procedure across the US for Hurricane Harvey (August

2017).

For my baseline definition of a port-level shock, I use a threshold of 18 m/s for ex-

perienced maximum wind speed. Importantly, I use the time of the first-ever recorded

information on the cyclone as the timing of the shock. This corresponds to the moment

when the weather agency first detected the cyclone anomaly, thereby helping to avoid

any anticipation by economic agents in a difference-in-differences setting. Table B.6

14The US Coast Guard, for instance, can issue a set of port conditions – i.e., measures restricting port
operations – to guide ship operators in responding to tropical weather conditions. Importantly, these
measures are issued upon the projected arrival of sustained gale-force winds (greater than 34 knots),
leading ports to preemptively prepare for the arrival of a cyclone. When the cyclone is projected to
reach the port within 12 hours, the port condition ZULU is issued, closing the port to all vessel traffic.
Appendix A provides an example of a Maritime Bulletin Safety Information, issued upon the arrival of
Hurricane Milton at the port of Key West (October 2024, Florida).

15The knot is a unit of speed corresponding to one nautical mile per hour. Sustained gale-force winds
approximately correspond to wind speeds greater than 63 kilometers per hour, or 39 miles per hour.

16I use the parametric model of Willoughby et al. (2006), adjusted for asymmetry following Chen
(1994)
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reports summary statistics on tropical cyclones.

Identification. I leverage the quasi-random timing and location of tropical cyclones

to examine how (i) port operations, (ii) firm-level route choices, and (iii) firm-to-firm

trade are affected by weather shocks. The empirical setting I consider poses several

challenges to estimation. First, the treatment is staggered, and the treatment effect is

likely heterogeneous across groups and over time. Tropical cyclones may affect ports

that differ in their preparedness and recovery capacity. Moreover, treated relation-

ships may differ in unobservable factors that influence their duration and resilience

to shocks, such as relationship age or input specificity. Recent work has shown that

two-way fixed-effects difference-in-difference estimators are biased in such settings

(Borusyak et al., 2024). Second, the treatment is non-absorbing: ports – and there-

fore relationships – can be treated multiple times while recovering in between. Third,

the treatment is likely continuous, depending on the magnitude of the cyclone or the

degree of exposure to weather-related disruptions.17 Fourth, to isolate the effects of

cyclones on ports from those on firms, I need to control for a rich set of fixed effects.

I seek to address these concerns by using stacked dynamic difference-in-difference

specifications, following Cengiz et al. (2019) and Deshpande and Li (2019). Concep-

tually, I define each time period during which at least one tropical cyclone occurs as

a cyclone event, indexed by τ. For each event, I define a uniform event window, over

which I observe the dynamics of port- and firm-level outcomes in the lead-up to and

aftermath of the cyclone shock.18 I extend this framework to allow for non-absorbing

treatments. That is, I only include units that either (i) are treated once within the event

window (clean treated) or (ii) are not treated at all during the window (clean con-

trols). Units may be treated multiple times (i.e., they may appear in several event

windows), as long as subsequent treatments fall outside the relevant window.19 This

approach allows me to control for a rich set of pre-shock unit characteristics and there-

fore strengthens the credibility of the common-trends assumption, while avoiding

non-admissible comparisons inherent to staggered designs.20

17Ports may rely on a set of critical infrastructure to operate, such as nearby power grids or entrepôts,
with differing levels of exposure to weather disasters (Verschuur et al., 2023a). Firms also exhibit vary-
ing degrees of reliance on high-risk routes for the delivery of goods.

18To preserve compositional balance between treated and control groups, I restrict attention to cy-
clone events for which outcomes are fully observed within the event window.

19This implies an assumption of treatment-effect stabilization, as in Dube et al. (2023).
20Wing et al. (2024) caution that stacked fixed-effects settings may introduce bias when averaging
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3.2 PORT-LEVEL DISRUPTIONS

I first document that tropical cyclones temporarily affect the operations of ports. I con-

struct daily measures of port activity from the IMF PortWatch data. The first outcome

of interest – the extensive margin of port operations – is a binary variable that takes the

value 1 if at least one vessel entered the port on day t, i.e., the port is active. The second

outcome of interest – the intensive margin of port operations – is the log number of

vessels that enter port p on day t, conditional on the port being active.

To construct the sample, I first restrict attention to ports that I can identify in the

Brazilian bill of lading data and that therefore export at least once to Brazil. I then

consider an event window of 15 days before and after each cyclone event τ, where τ

refers to the day on which the first observation of a cyclone track is recorded at sea.

Within each event window, I subsample all ports that are either (i) exposed only once

to sustained winds of at least 18 m/s, or (ii) not exposed to sustained winds from

tropical cyclones. The final sample consists of 594 ports, potentially exposed to 120

cyclone events from 2019 to 2023.21 I consider the following specification to estimate

the effect of cyclones on port operations:

yp,t,τ =
15

∑
h=−15

βhEp,τ + αp,τ + αt,τ + εp,t,τ , (1)

where yp,t,τ corresponds to the outcome of interest for port p on day t around cyclone

event τ. In the baseline specification, the treatment variable Ep,τ is binary, taking the

value 1 if port p was exposed to sustained winds of at least 18 m/s at event τ. The

regression controls for port-event and time-event fixed effects. Standard errors are

clustered at the port level.

Figure 3a shows the results of estimating Equation (1) on the extensive margin of

port operations, for a 15-day window before and after the shocks. The effect of port

exposure to cyclones is a 1- to 2-week decrease in the probability that the port is active,

followed by a full recovery. The effect corresponds to an average 9% decrease in the

probability of port activity across the post-event window (15 days).22 Figure 3b shows

ATT estimates across events if the share of treated units varies. However, the authors do not yet offer
an extension of their framework for non-absorbing treatments.

21148 ports are treated at least once in the sample.
22The unconditional probability of port activity in the pre-event window is 0.78. The duration of the
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(a) Port activity (b) Log vessel count

Figure 3: The impact of exposure to cyclones on port operations

Notes: These panels plot the effect of exposure to tropical cyclones on daily port-level outcomes, as
specified by Equation (1). The outcome in Panel 3a is a binary variable taking the value 1 if at least
one vessel entered the port on day t (port activity), and 0 otherwise. The outcome in Panel 3b is the
log number of vessels that use the port on day t, conditional on the port being active. Standard errors
are clustered at the port level. The bars correspond to 95% confidence intervals. Black dots are point
estimates significant at the 5% level, gray squares at the 10% level, and empty dots are non-significant
at the 10% level.

that, even when ports remain active, the number of vessels admitted to the port area

may decrease, as ports reduce the intensity of operations. Immediately after the shock,

port operations recapture – that is, port productivity increases briefly to reduce further

shipment delays.

Heterogeneity and sensitivity. I first explore the sensitivity of the results to alterna-

tive treatment definitions. In Appendix C.1, I verify that exposure to weaker wind

speeds (below the 18 m/s threshold) does not induce port disruptions. I also verify

that stronger exposure induces larger disruptions in port activity. I estimate Equa-

tion (1) by splitting the treated group by the duration of exposure to at least 18 m/s.

Hours of exposure proxy for both the port’s distance to the ship-avoidance area and

the cyclone’s intensity. Figure C.2a confirms that the bulk of port-level disruptions are

induced by long exposure (at least 12 hours) to sustained wind speeds.

Second, the data allow me to distinguish between ship types. I estimate Equation

(1) using port–ship-type–specific outcomes: containerized vs. other ships (e.g., bulk).

Container ships (or “liner” ships) typically operate along fixed, pre-planned lines, lim-

iting real-time route adjustments, while owners/operators of other ship types have

comparatively more flexibility in scheduling (Ksciuk et al., 2023). Figure C.2b shows

that container ships are less responsive to port exposure to cyclones, consistent with

effect is consistent with the findings of Verschuur et al. (2020). Reviewing the effect of natural disasters
on port operations using vessel tracking data, they find a median disruption duration of six days.
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pre-scheduled shipping.

3.3 ROUTE CHOICE

I then examine how port exposure to cyclones affects firms’ choice of shipping routes.

I seek to understand whether route choice serves as a margin of adaptation after firm

pairs are treated. I use monthly aggregates of the Brazilian shipment data at the

buyer–supplier–route level (b, s,r), where routes r are proxied by the pair of ports

through which shipments are loaded (port of origin po) and unloaded (port of desti-

nation pd).23 The outcome of interest is a monthly measure of the extensive margin

of route activity: a binary variable equal to 1 if there is a positive number of ship-

ments between b and s using route r, and 0 otherwise. Route activity is conditioned

on relationship–route entry – i.e., a route can be active for a relationship only after its

first shipment on that route.24 I also consider an intensive margin outcome – namely,

the log of the total weight of shipments between b and s using route r, conditional on

relationship–route activity.

To construct the sample, I aim to compare relationship–routes that are as similar

as possible in frequency, volume, and timing of shipments. I define an event window

of 5 months before and 10 months after each cyclone event τ, where τ refers to the

month in which the first observation of a cyclone track is recorded at sea.25 I sam-

ple relationship–routes that trade at least once within the 5-month pre-shock window,

thereby restricting attention to relationship-routes active before the shock. Relation-

ship–routes are treated if their port of origin is exposed to tropical cyclones at event τ.

Importantly, ports of destination (i.e., Brazilian ports) in the sample are not exposed to

tropical cyclones (see Figure 2a), allowing me to define treatment solely on the basis

of origin ports. I consider the following specification to estimate the effect of cyclone-

induced port disruptions on route choice:

ybsr,t,τ =
10

∑
h=−5

[
βhEpo∈r,τ + δhXbsr,h,τ + αh,τ

]
+ αbsr,τ + αbs,t + εbsr,t,τ , (2)

23Formally, routes are also defined over the origin and destination regions of shipments:
{no,nd, po, pd}. Conditional on (geolocated) firms fixed effects, route definition boils down to {po, pd}.

24This avoids comparing poorly defined potential routes – i.e., periods before a route’s first recorded
shipment. If a relationship’s first shipment on a route occurs within the first year of the sample, I assume
the relationship–route enters in the first month of the sample.

25τ refers to a month in which at least one cyclone forms and at least one port is exposed. A cyclone
event may include multiple cyclones, and ports may be exposed several times within the same event.
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where ybsr,t,τ corresponds to the outcome of interest for relationship–route (b, s,r) at

month t around cyclone event τ. In the baseline specification, the treatment variable

Epo∈r,τ is binary, equal to 1 if the port of origin po in route r was exposed to at least

18 m/s of sustained wind speed at event τ. The regression includes time–event, rela-

tionship–route–event, and relationship–month fixed effects. This specification restricts

comparisons to route choices within relationships and within events. Control vari-

ables Xbsr,h,τ are time dummies interacted with pre-treatment characteristics of each

relationship–route.26 Standard errors are clustered at the relationship level.

Figure 4a reports the estimation of Equation (2) on route activity, 5 months before

and 10 months after the shock. Results indicate that port exposure to cyclones de-

creases trade through affected routes for about 2 months, relative to unaffected routes.

At the time of exposure, the effect corresponds to a 12% decrease in the probability

of using the affected route.27 Figure 4b shows that firms do not adjust shipment size

when they continue trading through the affected route. Because the specification in-

cludes relationship-level fixed effects, the estimated impact of rerouting reflects an

additional adjustment margin beyond any direct disruption at the firm-to-firm level.

In other words, the results isolate the role of route substitution as a distinct channel of

adaptation, separate from the overall continuity of trade relationships between firms.

Heterogeneity and sensitivity. The short-lived treatment effect on route choice sug-

gests that firms adapt ex ante to the possibility of increased transportation costs due

to weather shocks.28 Still, Equation (2) pools all treatments and does not capture het-

erogeneity in treatment effects based on a relationship’s treatment history. I there-

fore decompose Equation (2) by including two treatment variables: 11
bs,τ × Epo∈r,τ,

which equals 1 if the treatment at τ is the first experienced by relationship (b, s), and

11<
bs,τ × Epo∈r,τ, which equals 1 for any subsequent treatment. This allows me to exam-

ine whether firms learn or adapt following past events. Figure C.3a shows that the

rerouting mechanism is much more pronounced for the first treatment than for sub-

sequent ones. Route activity decreases for up to six months following the first port

exposure to a cyclone – well after port operations resume. By contrast, subsequent

26These include the number of shipments, the number of active months, and the month of the last
shipment within the 5-month pre-treatment period.

27The unconditional probability of route activity in the pre-shock window is 0.43.
28This fact is consistent with the findings of Castro-Vincenzi et al. (2024), who observe mean reversion

in supply chain composition following flood shocks to firm premises.
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(a) Route activity (b) Log weight (kg)

Figure 4: The impact of port exposure to cyclones on route choice

Notes: These panels plot the effect of port exposure to tropical cyclones on monthly firm-to-firm–route-
level outcomes, as specified by Equation (2). The outcome in Panel 4a is a binary variable equal to 1 if
at least one shipment is observed for the trading pair through route r in month t (active route), and 0
otherwise. The outcome in Panel 4b is the log of total weight (kg) shipped through route r in month
t, conditional on the relationship–route being active. Regressions include relationship–month fixed
effects, and control for time dummies interacted with relationship-routes’ pre-treatment characteristics.
Standard errors are clustered at the relationship level. The bars show 95% confidence intervals. Black
dots indicate point estimates significant at the 5% level, gray squares at the 10% level, and empty dots
denote estimates that are not significant at the 10% level.

treatments lead to only a one-month decline in route activity, likely reflecting the me-

chanical effect of port closures. This suggests that firms learn from experience and

quickly converge toward ex ante adaptation in response to future shocks.

Route choice may also be constrained by which party schedules shipments. Con-

tainerized goods are typically carried by liner ships, operated by large companies

along fixed, pre-planned services. While firms can switch operators, choices may

be limited by compatibility between preferred ports and the ability of those ports

to service container ships. Bulk shipping, by contrast, generally offers greater flexi-

bility in scheduling vessels and ports. To assess the importance of these constraints,

I decompose Equation (2) by allowing treatment effects to differ between container-

ized and non-containerized shipping. I define 1c
bs,r,τ × Epo∈r,τ to equal 1 if the rela-

tionship traded only containerized goods in the 5-month pre-treatment window, and

1non-c
bs,r,τ × Epo∈r,τ to equal 1 if at least one shipment was non-containerized. Figure C.4a

shows that non-containerized shipping accounts for most of the treatment effect, con-

sistent with greater scheduling flexibility outside containerized services.

3.4 FIRM-TO-FIRM DISRUPTIONS

I finally turn to the effect of port exposure to cyclones on firm-to-firm trade. I am

mainly interested in the extensive margin of firm-to-firm trade – that is, in supply
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chain composition. I use monthly aggregates of the Brazilian shipment data at the

buyer–supplier level (b, s). My first outcome of interest is a monthly measure of rela-

tionship activity, defined as a binary variable equal to 1 if a positive number of ship-

ments occurs within the relationship (b, s) in month t, and 0 otherwise. Relationship

activity is conditioned on the entry of both the buyer and the supplier, respectively

defined as the month of the first recorded shipment received by b or sent by s.29 I also

consider an intensive-margin outcome, defined as the log of total shipment weight

between b and s, conditional on relationship activity.

The sample is constructed analogously to that in Section 3.3, though selection cri-

teria are defined at the relationship (b, s) level. Treated relationships are those that

used at least one exposed port of origin during the pre-shock window. I consider the

following specification to estimate the effect of cyclone-induced port disruptions on

firm-to-firm trade:

ybs,t,τ =
10

∑
h=−5

[
βhEpo∈Rτ

bs,τ + δhXbs,h,τ + αh,τ

]
+ αbs,τ + αb,t + αs,t + εbs,t,τ , (3)

where ybs,t,τ denotes the outcome of interest for buyer–supplier relationship (b, s) in

month t around cyclone event τ. In the baseline specification, the treatment variable

Epo∈Rτ
bs,τ is binary, equal to 1 if at least one port of origin po used by the relationship

(i.e., in the set of routes Rτ
bs) was exposed to sustained wind speeds of at least 18 m/s

during event τ.30 The regression includes buyer–month and supplier–month fixed ef-

fects, which absorb buyer- and supplier-specific shocks. This is important for isolating

the effect of cyclones on the ports used by relationships while controlling for potential

direct effects on suppliers themselves. Control variables Xbs,h,τ are time dummies in-

teracted with pre-treatment characteristics of each relationship.31 Standard errors are

clustered at the buyer level.

Figure 5a reports the estimation of Equation (3) on relationship activity, 5 months

before and 10 months after the shock. Results suggest that port exposure to cyclones
29Here, I follow Balboni et al. (2024). As for route activity, this avoids comparisons between poorly

defined potential relationships – i.e., before the first recorded activity of the trading parties. When the
first recorded shipment is observed within the first year of the sample, I assume that the firm enters
during the first period of the sample.

30The set of routes Rτ
bs is time-dependent, as it is defined using the pre-shock window.

31As with relationship–routes, these include the number of shipments, the number of active months,
and the month of the last shipment within the 5-month pre-treatment period, specified at the
buyer–supplier level.
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(a) Relationship activity (b) Log weight (kg)

Figure 5: The impact of port exposure to cyclones on firm-to-firm relationship

Notes: These panels plot the effect of port exposure to tropical cyclones on monthly firm-to-firm-level
outcomes, as specified by Equation (3). The outcome in Panel 5a is a binary variable equal to 1 if at least
one shipment is observed for the trading pair in month t (active relationship), and 0 otherwise. The
outcome in Panel 5b is the log total shipment weight for the relationship, conditional on the relation-
ship being active. Regressions include buyer–time and supplier–time fixed effects, and control for time
dummies interacted with relationships’ pre-treatment characteristics. Standard errors are clustered at
the buyer level. The bars denote 95% confidence intervals. Black dots indicate point estimates signifi-
cant at the 5% level, gray squares at the 10% level, and empty dots denote non-significant estimates at
the 10% level.

has a small, short-lived effect on the extensive margin of firm-to-firm trade, followed

by a full recovery in the probability of activity. The effect is largest one month after

cyclone onset, corresponding to a 17% decrease in the probability of trading for treated

relationships compared to untreated relationships.32 Figure 5b suggests that firms do

not adjust shipment size when they continue trading. Overall, results at the firm-

to-firm level indicate that rerouting is a sufficient mechanism to prevent significant

supply-chain recomposition.

Heterogeneity and sensitivity. I investigate the same heterogeneity dimensions as in

Section 3.3, i.e., along the treatment history and by containerization status of ship-

ments. Figure C.5a shows no significant differences between first and subsequent

treatments of firm pairs, suggesting that most learning occurs along the route-choice

margin. Trade in containerized goods, however, exhibits larger and more persistent

disruptions in firm-to-firm activity – up to three months of reduced activity (see Fig-

ure C.6a). This pattern is consistent with constraints in containerized shipping: when

scheduling limits route flexibility, higher transportation costs induce sourcing disrup-

tions.
32The unconditional probability of relationship activity in the pre-shock window is 0.42.
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4 THEORY

In this section, I develop a theory of spatial production network formation with en-

dogenous trade costs and weather shocks to trade infrastructure. The model ratio-

nalizes my empirical findings: (i) tropical cyclones affect the operations of maritime

ports and induce firm-to-firm trade disruptions; (ii) firms adapt to these disruptions

by rerouting trade; and (iii) so as to preserve sourcing relationships. I use the model to

perform counterfactual simulations under a climate change scenario and to evaluate

infrastructure-related adaptation policies.

To parsimoniously capture the empirical evidence on the impacts of trade infras-

tructure exposure to weather disasters on global supply chains, I assume that, in a

production network environment similar to Oberfield (2018), firms make joint sourc-

ing and routing decisions based on suppliers’ factory-gate costs and transportation

costs.33 Transportation costs are endogenous to traffic congestion, as in Allen and

Arkolakis (2022), and for maritime routes include the costs of using port infrastruc-

ture, which is potentially affected by weather disasters. Firms are perfectly informed

about the underlying distribution of weather-related risks to port infrastructure.

The model can generate predictions that are not testable in the reduced-form em-

pirical evidence in Section 3. First, the model incorporates traffic congestion, which is

likely to affect transportation costs in the long run. Section 3 shows that firms adapt

to weather shocks by redirecting trade through alternative routes. If traffic conges-

tion increases the cost of using these alternatives, such adaptation may, in turn, distort

the bilateral components of sourcing shares and affect the aggregate impact of infras-

tructure exposure to weather disasters. Second, while the empirical results describe

reactions to single weather events, they do not address a local shift in the distribution

of events – i.e., a shift in port-level climate conditions. The model accommodates such

a counterfactual by assuming that a shift in the distribution of weather disasters is

akin to a sequence of realized events through which firms update their information

about the probability distribution of extreme weather events.34

33I draw from the model of endogenous production network formation under idiosyncratic and ag-
gregate weather-disaster risks presented in Balboni et al. (2024). Chen et al. (2023) proposes a related
model in which technology compatibility between firms shapes the marginal costs of inputs. I extend
this class of models to include a geography, endogenous trade costs, and transportation-related weather
risks.

34Although static, the model can also describe the immediate aftermath of a weather disaster and
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Environment. The economy consists of a discrete set N of regions (indexed by n or n′),

each populated by a unit measure of firms, Mn = 1 ∀n ∈ N , and an exogenous mea-

sure of households Ln ∈ {Ln}n∈N ≡ L. Each region is endowed with a fundamental

productivity an ∈ {an}n∈N ≡ A. Some regions contain port infrastructure, which en-

ables trade across regions that are not directly connected by land.35 The set of ports is

denoted P . Both regions and ports are connected through a transportation network, i.e.,

a set of bilateral trade frictions incurred when shipping directly from one location (a

region or a port) to another. The transportation network depends on both endogenous

variables (traffic) and exogenous ones (distance and capacity). Regions are distant

from each other, with a bilateral measure of distance ϵnn′ ∈ {ϵnn′}n,n′∈N 2 ≡ D. Each

port has a capacity Kp ∈ {Kp}p∈P ≡ K (e.g., port berths). Regions are connected via a

countable set of routes R, which allow for trade in intermediate inputs.

Households. Households in region n inelastically supply labor li to local firms and

consume a bundle of differentiated final goods supplied by local firms:

qn =

(∫
i∈Mn

q
σ−1

σ
i di

) σ
σ−1

, (4)

where qi is the quantity of final goods supplied by firm i ∈ Mn, and σ > 1 is the elastic-

ity of substitution across varieties of final goods in region n. I assume no trade in final

goods and no migration across regions.36 Households face the budget constraint:

∫
i∈Mn

qi pi di = wn + Πn, (5)

where pi is the price charged by firm i for final goods, wn is the wage rate in region n,

and Πn denotes per-capita profits rebated from firms to households in region n.

Firms. Firms produce by combining local labor with perfectly substitutable interme-

diate inputs supplied by other firms along different routes. Each firm faces a mass

of potential suppliers located in all regions (including its own) and a set of delivery

routes. A specific combination of labor, input, and delivery route yields a technique of

therefore accommodate the dynamic – but short-lived – disruptions described in Section 3.
35Regions may contain multiple ports.
36These are restrictive assumptions, but they map directly to the evidence presented in Section 3, and

to the fact that the bill of lading data only include firm-related transactions.
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production, defined over a supplier–buyer match ϕ and a delivery route r:

yi(ϕ,r) = χ an(i) l1−α
i
(
z(ϕ)xi(ϕ,r)

)α, (6)

where li is the amount of labor used by firm i, xi(ϕ,r) is the amount of intermediate

inputs supplied through route r, z(ϕ) is the match-specific input-augmenting produc-

tivity, and an(i) is the productivity shifter of region n(i).37

Firms choose the technique that yields the minimum marginal cost of production,

at which they sell their goods to other firms – i.e., buyers have full bargaining power

(Oberfield, 2018). When selling final goods to local households, firms engage in mo-

nopolistic competition. Trade in intermediate inputs is subject to route-specific iceberg

costs: for each unit required in production, τn(j)n(i)(r)≥ 1 units must be shipped from

supplier region n(j) to buyer region n(i) along route r. The factory-gate marginal cost

of production using technique (ϕ,r) is therefore:

ci(ϕ,r) =
w1−α

n(i)

an(i)

(
τn(j)n(i)(r)

cj(ϕ)

z(ϕ)

)α

, (7)

where cj(ϕ) is the marginal cost of inputs from supplier j. I assume the following

distributional form to obtain a tractable characterization of the equilibrium:

ASSUMPTION 1. For any firm i in region n, the number of potential suppliers j ∈ Mn′ from

which i can draw a match with productivity z > z̄ follows a Poisson distribution with mean

an′ z̄−ξ , where an′ is the fundamental productivity of firms in region n′.

Assumption 1 describes the distribution of match-specific productivity among the

techniques available to a firm in region n. The parameter ξ governs the tail behavior

of the distribution of productivity draws (Oberfield, 2018; Chen et al., 2023; Balboni

et al., 2024). A higher value of ξ implies more similarity across draws, making buyers

more willing to substitute toward alternative suppliers when route-level or factory-

gate costs increase.

Shipping. Firms from region n can ship to any other region.38 However, shipments

37χ is a normalizing constant equal to α−α(1 − α)−(1−α).
38With a slight abuse of terminology, shipping encompasses both road and maritime transportation.

In this setting, transportation mode choice (e.g., road vs. maritime) is implied by route choice, with
an elasticity equal to the dispersion of match-specific productivity ξ governing firm-to-firm matching
(Fuchs and Wong, 2024).
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may be indirect, as some regions are not directly connected (e.g., by a direct road or

a maritime route). Shipping routes are composed of a countable set Br of legs, with

|Br| − 1 stops from origin n (k = 1) to destination n′ (k = |Br|). Each stop may be a

port or a region. Each stop involves leg-specific iceberg transportation costs between

locations, as well as port-level transportation costs. For a route r connecting n to n′

through |Br| legs, including |Pr| ports, the transportation costs are give by:

τn(j)n(i)(r) =
|Br|

∏
k=1

drk−1,rk

|Pr|

∏
m=1

tp(r)m . (8)

Following Ganapati et al. (2024), I allow transportation costs to depend on both en-

dogenous and exogenous variables:

drk−1,rk = d
(
ϵrk−1,rk

)
, tp(r)m = t(Ξ,Kp(r)m)× θp(r)m , (9)

where ϵrk−1,rk denotes exogenous transportation costs (i.e., distance), Ξ is a matrix of

traffic flows, Kp(r)m denotes port-level infrastructure capacity, and θp(r)m denotes port-

level weather-related wedges, with the following assumption:

ASSUMPTION 2. Port-level wedges are randomly drawn from a Pareto distribution with c.d.f.

Fp(r)(θ) = 1 − θ−ψp(r) for θp(r) ≥ 1.

Assumption 2 describes the distribution of port-level wedges. With a higher shape

parameter ψp(r), firms will on average draw lower transportation cost wedges, as the

tail of the distribution becomes thinner. This assumption ensures that transportation

costs in Equation (8) remain tractable. The set of shape parameters {ψp}p∈P governing

these weather-related wedges – i.e., climate trade costs – is denoted Ψ and summarizes

the port-level tropical cyclone climate.

Sourcing and routing decisions. I first characterize the distribution of factory-gate

costs:

PROPOSITION 1. Under Assumption 1, the marginal cost of firms in Mn′ follows a Weibull

distribution:

P
(
ci(ϕ,r) > c

)
= exp

−(an′wα−1
n′

) ξ
α

∑
n

an c̄−ξ
n ∑

r∈Rnn′

|Br|

∏
k=1

d−ξ
rk−1,rk

|Pr|

∏
m=1

t̄−ξ
p(r)m

 c
ξ
α

 , (10)
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where c̄−ξ
n = aξ

nw(α−1)ξ
n

(
∑̃
n

añ c̄−ξ
ñ ∑

r∈Rñn

|Br|

∏
k=1

d−ξ
rk−1,rk

|Pr|

∏
m=1

t̄−ξ
p(r)m

)α

Γ(1 − α) , (11)

and t̄−ξ
p(r)m

= t
(
Ξ,Kp(r)m

)−ξ ψp(r)m

ψp(r)m + ξ
. (12)

Proof. See Appendix D.1.

This result follows from the fact that, if the effective price of inputs for suppliers

in all origin regions and delivering through any route follows a Weibull distribution,

then the distribution of factory-gate prices for all firms i in destination n′ also follows

a Weibull distribution.39 The production-network structure affects the distribution

of marginal costs through the factory-gate costs of upstream suppliers, as shown in

Equation (11), which specifies downstream cost indices as a fixed point. Transporta-

tion costs depart from related models of production-network formation (Chen et al.,

2023; Balboni et al., 2024) by explicitly incorporating the set of links and transporta-

tion infrastructure that compose routes. I characterize the joint sourcing and routing

decisions of firms as a corollary to Proposition 1.

COROLLARY 1. The probability that firm i in n′ sources from route r connecting n to n′ is:

πi,r =
an c̄−ξ

n ∏|Br|
k=1 d−ξ

rk−1,rk ∏|Pr|
m=1 t̄−ξ

p(r)m

∑ñ añ c̄−ξ
ñ ∑r∈Rñn′ ∏|Br|

k=1 d−ξ
rk−1,rk ∏|Pr|

m=1 t̄−ξ
p(r)m

. (13)

Proof. See Appendix D.1.

Equation (13) represents the unconditional probability of choosing route r to source

goods. Given that route r links destination n′ to origin n, Equation (13) jointly specifies

the sourcing region and the delivery route. Because this probability is independent

of firm i characteristics, πi,r is also the share of expenditures of region n′ on region n

through route r. Aggregating the sourcing–routing shares across routes yields region-

to-region bilateral trade shares, as shown in Corollary 2:

39I define the effective price of inputs delivered by supplier j through route r as

λj(ϕ,r) =
cj

z(ϕ)

|Br |

∏
k=1

drk−1,rk

|Pr |

∏
m=1

tp(r)m
.
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COROLLARY 2. The bilateral trade share between n′ and n is:

πnn′ =
an c̄−ξ

n τ
−ξ
nn′

∑ñ añ c̄−ξ
ñ τ

−ξ
ñn′

, (14)

where τnn′ =

 ∑
r∈Rnn′

(|Br|

∏
k=1

d−ξ
rk−1,rk

)( |Pr|

∏
m=1

t̄−ξ
p(r)m

)− 1
ξ

. (15)

Proof. See Appendix D.1.

Equation (14) resembles that of traditional trade models, with the addition of pro-

duction network–affected marginal-cost indices c̄n and endogenous transportation costs.

Equation (15) captures the departure from trade models with endogenous routing

(Allen and Arkolakis, 2022; Ganapati et al., 2024; Fuchs and Wong, 2024) by explic-

itly incorporating infrastructure-level costs.

Equilibrium transportation costs. Define the auxiliary matrix of bilateral transporta-

tion resistance ∆ as a (|N |+ |P|)× (|N |+ |P|) matrix. Each of the first |N | rows and

columns of ∆ corresponds to a region, while each of the last |P| rows and columns

corresponds to a port. Denoting both regions and ports as locations, indexed by l or l′,

the (l, l′) entry δll′ of ∆ is zero if l and l′ are not directly connected. If the two locations

are connected and l′ is a port, then δll′ = d−ξ
ll′ t̄−ξ

l′ ; if the two locations are connected and

l′ is not a port, then δll′ = d−ξ
ll′ . It follows that the region-to-region transportation costs

are given by the Leontief inverse of the auxiliary matrix ∆:

[τnn′ ] =
[
(I − ∆)−1

]◦(− 1
ξ

)
. (16)

The conditional probability that a good passes through port p, given origin n and

destination n′, is:40

Θp|nn′ =

(
τnp τpn′

τnn′

)−ξ

. (17)

Using these port-level conditional probabilities, I characterize traffic as the total value

of goods that transit through ports:

Ξp = ∑
n

∑
n′

Θp|nn′ Xnn′ , (18)

40Here, I follow Allen and Arkolakis (2022) and Ducruet et al. (2024).

25



where Xnn′ is the total trade value from n′ to n. Equation (9) implies that port traf-

fic affects transportation costs – a form of externality that firms do not internalize

when making sourcing–routing decisions. I formalize this idea with the following

parametrization of bilateral and port-level transportation frictions:

d−ξ
nn′ = ϵλ1

nn′ , t̄−ξ
p = Ξλ2

p Kλ3
p

ψp

ψp + ξ
, (19)

where λ1 is the elasticity of link-level costs to distance, λ2 is the elasticity of port-level

costs to port traffic, and λ3 is the elasticity of port-level costs to port capacity.41

Closing the model. Appendix D.2 completes the description of the model environ-

ment. The model closes with a goods market–clearing condition, which requires that

trade in intermediate inputs be balanced.

Equilibrium. The economy is characterized by a set of parameters {σ,α,ξ,λ1,λ2,λ3},

a geography G = {N ,P ,L,M,A,D,K,Ψ}, and a distribution of wages and factory-

gate prices {wn, c̄n}n∈N , such that markets clear and the transportation network is

in equilibrium. Appendix D.3 formally defines the general equilibrium of the model

with traffic congestion and provides the system of equations that characterize it. Ap-

pendix D.4 describes the numerical algorithm implemented to recover counterfactual

equilibria.

5 BRINGING THE MODEL TO THE DATA

The aim of this section is to quantify the model so that it matches global data at the

subnational level in the early 21st century. To do so, I first estimate the key parameters

of transportation costs using Brazilian bill of lading data.42 Other economy-wide pa-

rameters are drawn from the literature. I then use these parameters, together with a

model inversion, to map the model’s geography G onto global observables.

I recover the following parameters and fundamentals: the measure of labor (Ln);

fundamental region-level productivity (an); port capacity (Kp); the elasticity of trans-

portation costs with respect to distance (λ1), traffic (λ2), and port capacity (λ3); port-

level weather dispersion (ψp); the final-goods elasticity of substitution (σ); the inter-
41From Proposition 1, Assumption 2, and the definition of port-level trade costs in Equation (9),

t̄−ξ
p = t(Ξ,Kp)−ξ ψp

ψp+ξ . I parametrize t(Ξ,Kp)−ξ = Ξλ2
p Kλ3

p .
42A caveat of this exercise is that, due to data constraints, I calibrate a global model with local data

from Brazil. An implicit assumption is that the estimated elasticities have external validity.
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Table 1: Calibration of parameters and fundamentals

Parameters Description Source/Procedure

Panel A: Parameters from related literature
σ = 2 Final goods CES Castro-Vincenzi (2024)
α = 0.8 Intermediate input share Balboni et al. (2024)
ξ = 8 Trade elasticity Allen and Arkolakis (2022)

Panel B: Calibrated parameters
λ1 = −0.48 Distance elasticity Section 5.1
λ2 = −0.25 Traffic elasticity Section 5.1
λ3 = 0.42 Capacity elasticity Section 5.1

Fundamentals Description Source/Matched moments

Panel C: Calibrated fundamentals
N Regions Aggregation at GAUL1 level
P Ports IMF PortWatch
L Population Rossi-Hansberg and Zhang (2025)
A Region-level productivity Matched to Rossi-Hansberg and Zhang (2025)
D Distance Eurostat SeaRoute & Great-circle distance
K Port capacity IMF PortWatch
{ψp}p∈P Climate trade costs Section 5.1

mediate input share (α); and the dispersion of match-specific productivity (ξ). Table

1 summarizes the provenance or procedure used to obtain the calibrated parameters

and fundamentals. Section 5.3 describes validation tests of the baseline calibration.

5.1 ESTIMATING TRANSPORTATION COSTS

I aim to recover a set of transportation costs that accounts for the effects of traffic, port

capacity, and weather risk. To estimate the parameters of transportation costs, I use a

reduced-form analogue of route-level bilateral trade shares (Corollary 1):

log(πvalue
nd,r,t) = αno,t + αnd,t + αpd,t + α1 log(Distancer) + α2 log(ΞTEU

po,t )

+ α3 log(KTEU
po ) + α4 log(CycloneRiskpo) + εnd,r,t.

(20)

I bring Equation (20) to the data by constructing a microdata analogue of the route-

level bilateral trade share from Brazilian bill of lading data. That is, πvalue
nd,r,t is defined

as the weekly share of shipment value that destination location nd sources through

route r. In the data, locations refer to GAUL1 subnational units, while routes are ap-

proximated as the quadruplet {no,nd, po, pd}, where po and pd are the ports of origin

and destination, respectively. The distance component of transportation costs is ap-

proximated as the least-cost land–sea distance traveled by goods from supplier origin

to buyer destination, passing through po and pd. I use weekly estimates of total TEU
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volumes transiting through ports from PortWatch to proxy port-level traffic. Port ca-

pacity is proxied by the 99th percentile of daily TEU traffic processed by each port over

the sample period (2019–2023). I proxy cyclone risk using expected wind speed at the

port, as reported in the STORM data (see Figure B.2a).43 Origin-time and destination-

time fixed effects control for any origin or destination general equilibrium terms in

Equation (13).

Regressing route-level bilateral trade shares on port traffic and port capacity is vul-

nerable to simultaneity: both regressors are equilibrium-derived outcomes in the mar-

ket for port throughput, so unobserved shocks that shift demand or supply curves

also enter the error term. I address these endogeneity concerns by estimating Equation

(20) with two-stage least squares (2SLS) and two orthogonal curve-shifters. Port traf-

fic is instrumented with global container throughput interacted with each port’s 1950

coastal-population share – a predetermined demand shifter that scales worldwide traf-

fic variations across ports while leaving local handling costs unchanged. Capacity is

instrumented with mean terrain ruggedness within 20 km of the port, a geologic sup-

ply determinant that raises inland evacuation costs and therefore limits optimal port

capacity, while remaining exogenous to current trade flows. Appendix E.1 details the

construction of the instruments and documents robust first-stage relevance for both

port traffic and capacity.

Table 2 reports the results. Conditional on port capacity, a 1% increase in port

traffic reduces route-level bilateral trade shares by 1.78%. Assuming a trade elasticity

of ξ = 8 (Allen and Arkolakis, 2022), this implies a 0.22% increase in port-level trade

costs.44 Conversely, a 1% increase in port capacity decreases port-level trade costs by

0.30%, indicating the presence of scale economies.45 Furthermore, a 1% increase in

cyclone risk lowers route-level bilateral trade shares by 0.08% – corresponding to a

0.01% increase in transportation costs.

43Formally, I parameterize ψp

ψp+ξ = CycloneRiskp =
(

1 + windspeed(0)
p

)λw

, where windspeed(0)
p is com-

puted as the yearly mean expected wind speed in cells within a 50 km radius of the port under the
current climate; λw is the elasticity of transportation costs with respect to expected wind speed.

44By comparison, Allen and Arkolakis (2022) find an elasticity of traffic flow (per lane) with respect
to transportation cost of 0.09 in the US highway system.

45Given the high observed correlation between port-level traffic and capacity, this finding is consistent
with Ganapati et al. (2024), who document scale economies in the maritime network, although they do
not disentangle traffic from capacity.
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Table 2: Estimation of transportation costs

πvalue
nd,r,t

(1) (2)

Log Port Origin Traffic -0.01 -1.78
(0.03) (0.25)

Log Port Origin Capacity 0.15 2.36
(0.04) (0.31)

Log Distance -0.36 -0.46
(0.03) (0.04)

Log Cyclone Risk -0.02 -0.08
(0.01) (0.01)

Observations 90,504 90,504
Adjusted R2 0.67 0.64
Wald-F, Log Port Origin Traffic 9,476.47
Wald-F, Log Port Origin Capacity 9,453.84

nd-week fixed effects ✓ ✓
no-week fixed effects ✓ ✓
pd-week fixed effects ✓ ✓

Notes: This table presents the results of the estimation of transportation costs, as specified by Equation
20. The outcome is the log weekly share of shipment value that destination location nd sources through
route r. Port Origin traffic refers to weekly estimates of total TEU volumes transiting through ports of
origin of shipments. Port Origin Capacity refers to the 99th percentile of daily TEU volume at ports.
Distance refers to the total route distance (land and sea). Cyclone Risk refers to the expected windspeed
at ports, as reported in the STORM data. Panel (1) reports the OLS estimation, while Panel (2) reports
the 2SLS estimation. Robust standard errors are clustered at the {no,nd, po, pd}-week level.

5.2 FUNDAMENTALS AND ECONOMY-WIDE PARAMETERS

Parameters from the literature. I follow Castro-Vincenzi (2024) by setting σ = 2, and

Allen and Arkolakis (2022) by setting ξ = 8. I set the intermediate-input share to α =

0.8 following Balboni et al. (2024).

Fundamentals. The model is calibrated at the GAUL1 level. I calibrate GAUL1-level

population using Rossi-Hansberg and Zhang (2025), which provides population es-

timates at 1◦ spatial resolution. I assign the ports in PortWatch to each GAUL1 unit

and use the 99th percentile of daily TEU traffic as a measure of port capacity. Dis-

tances between regions are approximated by great-circle distances between GAUL1

centroids. For computational sparsity in the transportation-network matrix, I retain

centroid distances only for contiguous region pairs identified via polygon contiguity

(first-order neighbors). I use Eurostat’s SeaRoute program to calculate the shortest sea
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routes between ports. As in Section 5.1, I parametrize ψp
ψp+ξ = (1 + windspeed(0)p )λw ,

where windspeed(0)p is the yearly mean expected wind speed in cells within a 50 km

radius of the port under the current climate (see Figure B.2a), and λw is the elasticity

of transportation costs with respect to expected wind speed.

With the remaining model parameters calibrated, I recover region-level fundamen-

tal productivity by inverting the model so that it matches the local GDP-per-capita es-

timates reported by Rossi-Hansberg and Zhang (2025) at 1◦ spatial resolution. I com-

pute the population-weighted mean GDP per capita within GAUL1 subnational units

as a proxy for region-level wages. Using an inversion of the equilibrium conditions, I

obtain the vector of fundamental productivities that rationalizes observed wages. The

inversion procedure is described in Appendix E.2.

Geography sample. I subsample the geography data to reduce the dimensionality

of the numerical problem and remove outliers. The raw geography comprises 2,381

GAUL1 subnational units (regions) and 1,666 ports from PortWatch. I first remove

regions whose population and GDP-per-capita estimates are zero due to measurement

error. I also remove ports whose port capacity is zero, due to very low and infrequent

activity. A model requirement is that the transportation network be a complete graph

– i.e., all locations (regions and ports) must be linked to every other location through

at least one route. I retain all regions that are part of the largest connected graph the

transportation network, resulting in 2,246 regions. I then truncate the port data to

retain only the top 750 ports, ranked by total traffic volume across the sample (see

Figure E.1). These ports account for 97% of total TEU volume and 86% of total vessel

counts in the PortWatch data (2019–2023).

5.3 MODEL FIT

Before using the model to simulate future changes in port climates, I verify the plau-

sibility of the quantification. I show that the model’s predictions align well with data

moments for maritime traffic, local productivity, and trade. I also confirm that con-

gestion in transportation networks – a novel feature in models of spatial production

networks – is a key mechanism for fitting the data.

I first compare the model-based estimates for port traffic and fundamental produc-

tivity to their data counterparts. Figure 6a compares the model-derived port traffic
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(a) Port traffic (untargeted) (b) Nightlights (untargeted)

Figure 6: Model fit

Notes: These panels compare model-based moments to their (untargeted) data counterparts or proxies.
Panel 6a plots log-normalized port traffic in the data – measured as average yearly total TEU volume –
(x-axis) against log-normalized model-based estimates of port traffic (y-axis). Panel 6b plots per-capita
nightlight intensity at the GAUL1 subnational level in the data (x-axis) against log-normalized model-
based estimates of fundamental productivity (y-axis). Model-based moments are obtained from the
inversion procedure described in Appendix E.2.

(normalized by the maximum) to the average yearly total TEU volume in the Port-

Watch data (equally normalized), in logs. The model performs well in predicting port

traffic, with a correlation of 0.86, despite port traffic being an untargeted moment. Fig-

ure 6b compares log fundamental productivity recovered from the model inversion

with log per-capita nightlight intensity – a data-driven proxy for local productivity.

Nightlight data are taken from Li et al. (2020) and aggregated at the GAUL1 level.

While the comparison remains noisy, model-based fundamental productivity is posi-

tively correlated with per-capita nightlights (0.32).

I then verify the model fit with country-level bilateral trade shares. Figure E.3 com-

pares log country-level trade shares – recovered from GLORIA input–output tables

(IELab, 2025) – with their model-based counterparts. The model replicates the rank-

ing of bilateral trade shares (correlation = 0.56), although it overestimates the level of

domestic trade shares.46 This discrepancy arises because the model does not explicitly

account for domestic trade infrastructure – domestic trade costs are normalized to one.

Finally, to illustrate the role of port-level congestion in fitting the data, I solve

for the equilibrium of the model with no congestion spillovers (λ2 = 0). Figure E.2

compares the fit of model-based port traffic to the data with and without congestion

46This implies that the counterfactual simulations provide lower bounds for welfare impacts from
changes in transportation cost fundamentals.
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spillovers. While the correlation with the data remains high (0.87), removing conges-

tion significantly compresses the dispersion of port traffic estimates – highlighting that

congestion spillovers are quantitatively important for explaining heterogeneity in port

traffic.

6 QUANTITATIVE RESULTS

This section quantifies how firms’ private responses shape the welfare effects of port-

level climate change. I examine a counterfactual in which cyclone-related wind risk at

ports rises under an unmitigated climate change scenario (RCP8.5). Comparing equi-

libria with and without rerouting isolates the adaptation margin and its implications

for port traffic and regional welfare.

Climate change at ports and private rerouting. I first investigate the effect of a shift in

the distribution of cyclone-related wind speed at ports on maritime traffic and global

welfare. I infer the climate-change-induced increase in extreme wind events at the

port level using the expected wind speed from the STORM data under an RCP8.5 sce-

nario (see Figure B.2b). The change in predicted wind conditions around port locations

provides my main counterfactual variable. In practice, I solve for the equilibrium at

baseline (see Section 5.2), and compare model-based outcomes to alternative equilibria

with changes in fundamentals.

Two main outcomes of interest are the change in port traffic and the change in

region-level welfare. Port traffic is given by Equation (18). Welfare is defined as region-

level real income, formally derived in the following proposition:

PROPOSITION 2. Region-level welfare in this economy, measured as real income, is given by:

Vn = Lnwn

anwα−1
n

(
∑
n′

an′ c̄−ξ
n′ τ

−ξ
n′n

) α
ξ

σ−1

Γ
(

1 − α(σ − 1)
ξ

)
(21)

Proof. See Appendix D.5.

Figure 7a plots regional welfare changes under a climate change scenario. While

aggregate welfare is virtually unaffected (+0.005 basis points), substantial heterogene-

ity emerges. At the 5th percentile, welfare losses amount to -0.47 bp, while welfare

gains at the 95th percentile reach 0.12 bp. Welfare losses are generally concentrated
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(a) ∆ Welfare (bp) (b) ∆ Port traffic (%)

(c) ∆ Welfare (bp) - fixed routing (d) ∆ Port traffic (%) - fixed routing

Figure 7: Quantitative results - Present to RCP8.5 (2020-2050)

Notes: These Panels present the change in port traffic and region-level welfare, in a scenario of in-
creased climate risks at ports. In Panels (a) and (b), I allow firms to reroute optimally to avoid increased
transportation costs. In Panels (c) and (d), the routing choice is fixed as baseline. All outcomes are
generated using the algorithm described in Appendix D.4. The color scales of all Panels are truncated
at the 1st and 99th percentiles.

in well-defined areas – e.g., Africa and South America – illustrating the presence of

localized spillovers. Port traffic (Figure 7b) shows similar variation. At the 5th per-

centile, ports experience a -0.98% decrease in traffic, while at the 95th percentile traffic

increases by 0.79%. Aggregate traffic decreases by 0.26%. Wind speed risk shifts trade

toward less affected ports: Figure 8a shows a negative correlation between expected

wind speed change and traffic change. The observed variance in port traffic change

reflects the trade-off between increased weather risk at ports and congestion spillovers

induced by rerouting.

Rerouting as adaptation. I seek to disentangle the role of rerouting, which induces

spillovers in general equilibrium, from the increase in weather risks. To do so, I simu-

late an equilibrium with the same increase in weather risks as in the RCP8.5 counter-

factual, but restrict route choice to baseline – that is, I shut down the rerouting margin.

In practice, the probability that a good passes through port p conditional on origin

n and destination n′ is not given anymore by Equation (17), where τnn′ encompasses
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(a) RCP8.5 with rerouting (b) RCP8.5 without rerouting

Figure 8: Port traffic and expected wind speed costs

Notes: These panels plot the change in port traffic against the change in expected wind speed from
tropical cyclones. On the x-axis, I plot the change in yearly mean expected wind speed recovered
from the STORM model, under both the current and future RCP8.5 climate. I remove port with zero
expected windspeed at baseline, and truncate the data at the 5th and 95th percentile in expected wind-
speed change. On the y-axis, I plot the change in port traffic, generated using the algorithm described
in Appendix D.4. In Panel 8a, I allow firms to reroute optimally to avoid increased transportation costs.
In Panel 8b, the routing choice is fixed as baseline.

increased weather risks. Rather, I fix

π
(0)
p|nn′ =

τ
(0)
np τ

(0)
pn′

τ
(0)
nn′

−ξ

, (22)

where τ
(0)
nn′ denotes the transportation costs estimated under the current climate. This

amounts to not allowing private rerouting responses of firms.

Figure 7c plots regional welfare changes in a climate change scenario with fixed

routing. In the absence of rerouting adaptation, aggregate welfare declines (-0.04 basis

points). The distribution of welfare losses changes drastically – including concentrated

losses in North America, the UK, and Japan. Aggregate port traffic, furthermore, de-

creases substantially (-4.4%, Figure 7d). Figure 8b shows that traffic change becomes

de-correlated from increased weather risk, a consequence of fixed routing. In the ab-

sence of rerouting as an adaptation mechanism to weather risk, domestic trade sub-

stitutes for international trade, and demand for port traffic decreases globally. Figures

E.4a and E.4b in Appendix E.4 show that the variance in welfare and traffic changes

increases without rerouting, along with larger welfare and traffic losses.
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7 INFRASTRUCTURE POLICY

This section studies the efficient allocation of scarce port investment under evolv-

ing port-level climate risk. I develop a sufficient-statistics, computationally tractable

framework that maps port capacity expansions into welfare changes and delivers a

ranking of investment priorities. I then quantify the misallocation that arises when in-

vestment decisions abstract from changing port-specific climate conditions and from

firms’ private responses – first globally, and then within the EU27.

7.1 A SOCIAL SAVINGS SUFFICIENT STATISTIC FOR PORT CAPACITY

I adopt a social savings sufficient-statistics approach, originating in Fogel (1962). This

method entails expressing the elasticity of welfare to port capacity solely in terms of

observable reduced-form objects, allowing to recover first-order welfare changes with-

out solving the full general equilibrium of the model.47 As in Allen et al. (2025), the

sufficient statistics I derive account for general equilibrium economic adjustments and

endogenous route choice.48 I characterize the social savings sufficient statistics for port

capacity as follows:

PROPOSITION 3. The elasticity of region-level welfare Vn with respect to port capacity Kp is:

∂ logVn

∂ logKp
= βwg(w)

n,p + βτ ∑
n′

πn′n

[
−ξg(c)n′,p + λ3Θp|nn′ + λ2 ∑

p′∈P
Θp′|nn′g(Ξ)p′,p

]
, (23)

where g(w)
n,p =

∂ logwn
∂ logKp

, g(c)n,p =
∂ log c̄n
∂ logKp

, and g(Ξ)p′,p =
∂ logΞp′
∂ logKp

, and βw and βτ are constants built

from economy-wide parameters. The elasticities of wages, factory-gate costs, and port traffic to

port capacity are the solution to the following set of equations:


Aww AwΞ Awc

AΞw AΞΞ AΞc

Acw AΞc Acc




g(w)
n,p

g(Ξ)p′,p

g(c)n,p

 =


bw

bΞ

bc

 , (24)

47A full general equilibrium approach to evaluate the welfare effects of infrastructure improvements
would involve sequentially increasing the capacity of each of the 750 ports by 1%, and computing
welfare changes from baseline – as in Brancaccio et al. (2024). In my case, with a model calibrated at the
subnational level, such an exercise is computationally burdensome – the estimated running time of the
simulation is of 62 days.

48I depart from Allen et al. (2025) in several ways. First, I consider infrastructure improvements to
nodes (i.e., ports), rather than to links (e.g., rail segments). Second, I abstract from mode of transport
choice. Third, I explicitly allow for trade in intermediate inputs via production networks.
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where

{Aww,AwΞ,Awc,AΞw,AΞΞ,AΞc,Acw,AΞc,Acc,bw,bΞ,bc}

are constants built from equilibrium objects.

Proof. See Appendix D.6.

Although Proposition (3) characterizes local gains to port capacity improvements,

aggregation can flexibly yield global (or larger-scale) gains. Global welfare elasticity

to port capacity amounts to a welfare-weighted average of region-specific elasticities:

∂ log V̄
∂ logKp

= ∑
n∈N

Vn

V̄
∂ logVn

∂ logKp
. (25)

Equation (23) highlights four channels that shape the welfare elasticity with respect

to port capacity. The income channel, g(w)
n,p , captures how a capacity shock at port

p feeds through general equilibrium into local wages. The input cost channel, g(c)n′,p,

reflects the impact on factory-gate costs at every origin n′, weighted by the expenditure

share πn′n of region n. The direct routing channel, λ3Θp|nn′ , captures the fact that

increasing capacity at p lowers bilateral transport costs along any path that physically

traverses p – in other words, the “shortcut” offered by expanding the port. Finally, the

congestion spillover channel, λ2 ∑p′ Θp′|nn′ g(Ξ)p′,p, captures how capacity expansion at p

affects traffic Ξp′ system-wide, thereby altering congestion even on routes that do not

traverse p itself.

Importantly for policy analysis, the decomposition in Proposition (3) allows map-

ping welfare impacts of infrastructure improvements to observable quantities, at the

sole cost of solving a system of linear equations. Armed with observed quantities

{Ln,wn, Xnn′ ,πnn′ ,Θp|nn′} and economy-wide parameters {σ,α,ξ,λ1,λ2,λ3}, one can

estimate welfare payoffs from port expansion without solving a large-scale general

equilibrium model. These estimates account for first-order traffic congestion spillovers

within transportation networks while preserving the income and input cost chan-

nels.49

49In the exercises below, I use model-based counterfactual outputs at the sub-national level. How-
ever, welfare impacts of port improvements can also be estimated at a higher level of aggregation using
real data. Wages wn, population Ln, trade flows Xnn′ , and bilateral trade shares πnn′ are readily available
at the country level. The routing kernel Θp|nn′ can be approximated using publicly available bilateral re-
sistance data and port traffic volumes – requiring only the assumption of a functional form for bilateral
transportation costs.
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7.2 INFRASTRUCTURE POLICY UNDER CLIMATE CHANGE

The social-savings sufficient-statistics approach provides a framework to identify which

nodes of the transportation network yield the highest welfare gains from marginal in-

vestment. I implement this approach using the general equilibrium results from Sec-

tion 6, comparing the baseline and the RCP8.5 climate scenarios. Figure 9a reports the

port-level global welfare elasticities for all 750 ports in the sample under the RCP8.5

scenario. On average, a 1% increase in port capacity raises global welfare by 0.02%.50

This average conceals substantial heterogeneity across ports: the elasticity ranges from

0.004 at the 5th percentile to 0.06 at the 95th percentile, suggesting that uniform invest-

ment across ports would be highly inefficient.

How does the exposure of ports to future climate conditions alter these returns

to investment? In line with Balboni (2025), I show that accounting for environmen-

tal damage is essential for the efficient allocation of infrastructure spending. Figure

9b illustrates that neglecting future climate impacts (“policy myopia”) can redirect re-

sources toward ports with relatively low welfare payoffs. Under the RCP8.5 scenario,

welfare gains from expanding port capacity fall by 15% at the 5th percentile of the elas-

ticity distribution, while they rise by 12% at the 95th percentile. These results highlight

the importance of incorporating forward-looking climate considerations into infras-

tructure investment decisions.

To quantify the extent of potential misallocation in port capacity investments, I con-

struct an allocation rule in which the share of investment g∗p received by each port is

proportional to its global welfare elasticity under the RCP8.5 scenario.51 This first-order

allocation rule ranks ports by their welfare-improving potential once future climate

risks and firms’ adaptation margins are accounted for. I then compare this benchmark

to alternative investment rules i, denoted g(i)p , using the following measure of misallo-

cation:

Misallocation(%) =
1
2 ∑

p
|g∗p − g(i)p |. (26)

This metric answers the question: ”what share of total port investment would need to

be reallocated to match the climate-adjusted first-order allocation?” When comparing

50For comparison, Brancaccio et al. (2024) estimate that a 1% increase in total U.S. port capacity raises
aggregate welfare by 0.5%.

51Formally, g∗
p =

∂ log V̄
∂ logKp

/ ∑p′
∂ log V̄

∂ logKp′
, evaluated under the RCP8.5 scenario.
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(a) Global welfare elasticity (b) ∆ Welfare elasticity (%)

Figure 9: Welfare elasticity to port capacity

Notes: These panels plot the social savings sufficient statistics of port capacity under a RCP8.5 scenario.
In Panel 9a, I plot the port-level elasticity of welfare to port capacity. In Panel 9b, I plot the change in
port-level welfare elasticities from the baseline scenario to the RCP8.5 one. Welfare elasticities are com-
puted from the counterfactual outputs of Section 6, using the solution method described in Appendix
D.6. The color scales of both panels are truncated at the 5th and 95th percentiles.

the climate-aware first-order rule to a myopic one (based on present climate condi-

tions), the results imply that policy myopia would misallocate 2.3% of total global

port investment. For reference, a purely capacity-based rule misallocates 33.3%, while

an equal-share rule misallocates 30.5%.52

7.3 INVESTMENT INTO PORTS: THE CASE OF THE EU

I then illustrate how the social-savings sufficient-statistics framework can inform spa-

tial investment decisions and how accounting for future climate conditions affects

their allocation. I focus on the case of EU27 ports. Based on port-level surveys and

investment pipeline data, ESPO (2024) estimates that EU ports plan approximately

EUR 84 billion (around USD 93 billion) of investment by 2034. I construct a counter-

factual scenario in which this aggregate amount is allocated across EU ports using the

first-order allocation rule – computed for EU27 welfare gains – as the guiding crite-

rion. The analysis assesses how future climate conditions may alter the spatial pattern

of welfare-improving investment.

The first step is to derive the investment allocation rule. Using the social-savings

sufficient-statistics framework, I compute the shares of total investment implied by the

first-order allocation rule. The EU27 welfare elasticity of European ports is obtained

by aggregating Equation (23) over regions belonging to EU27 countries. Investment

52The “present-climate” rule allocates investment shares proportional to welfare elasticities com-
puted under current climate conditions, while the other two rules allocate based on current port ca-
pacity or equal weights across ports.
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(a) ∆ Welfare (bp) (b) ∆ Port traffic (%)

Figure 10: Port investments and RCP8.5 – the EU case

Notes: These panels display changes in region-level welfare (Panel 10a) and port traffic (Panel 10b)
for the EU27 under a scenario of increased climate risks with port investment. Each panel compares an
equilibrium in which investment follows a myopic first-order rule (evaluated under baseline climate)
to one that accounts for future climate conditions at ports. All results are generated using the algorithm
in Appendix D.4. Sufficient statistics for investment allocation are computed from the counterfactual
outputs of Section 6, following the procedure in Appendix D.6. Color scales are truncated at the 1st and
99th percentiles.

shares are then constructed in proportion to each port’s welfare elasticity (Figure E.6a).

As in the global analysis, future climate conditions modify the relative ranking of ports

(Figure E.6b): welfare gains from additional port capacity decline by 2% at the 5th

percentile and rise by 3% at the 95th percentile.

The second step is to translate the aggregate investment amount into port capacity

changes. To do so, I use data on port investments collected by the World Bank in low-

and middle-income countries (LMICs) and study the resulting increases in port capac-

ity at the recipient ports (World Bank, 2025). The dataset is described in Appendix

B.5. In a staggered difference-in-differences design (Appendix E.5.1), I estimate that

USD 1 billion of investment increases port capacity by 3,649 TEU-days on average –

equivalent to a 27% increase in unconditional port capacity in LMICs. This elasticity is

used to translate the allocated investments into implied capacity expansions for EU27

ports.

Finally, I compare two counterfactuals in which the same USD 93 billion is dis-

tributed across 110 EU27 ports according to (i) the first-order allocation rule computed

under baseline climate conditions (myopic), and (ii) the same rule computed under
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the RCP8.5 scenario (climate-aware). The misallocation metric indicates that ignor-

ing future climate conditions would misallocate 0.5% of total EU27 port investment,

resulting in aggregate welfare losses of −0.04 basis points (Figure 10a). Nearly all

EU27 ports experience a decline in traffic (Figure 10b), with total EU port traffic falling

by 1.6%. These findings highlight that future climate conditions can meaningfully

reshape the spatial pattern of welfare-improving investments. Incorporating climate-

adjusted welfare improvements into investment planning is therefore essential for en-

suring that long-term infrastructure policy remains both efficient and resilient.

8 CONCLUSION

This paper investigates the impacts of climate-induced disruptions on global supply

chains, focusing on the role of disruptions to maritime transportation infrastructure.

Leveraging high-frequency data on firm-to-firm shipments and detailed cyclone activ-

ity, I provide empirical evidence on how extreme weather events affect port operations

and reshape trade routes. My findings show that, while firm-to-firm relationships are

only temporarily affected due to the mechanical effect of port shutdowns, routing de-

cisions across transportation networks adapt significantly and dampen the trade dis-

ruptions induced by weather at ports.

I further develop a quantitative model of spatial production networks incorporat-

ing endogenous transportation costs and congestion spillovers, offering a framework

to evaluate the broader economic implications of climate-induced transportation dis-

ruptions. The model reveals spatial and welfare implications of climate risks to trade

infrastructure for global trade, emphasizing the critical role of private adaptive strate-

gies in mitigating adverse effects.

Finally, I explore infrastructure policy in a context of climate change. Using a

sufficient-statistics approach, I develop a method to evaluate welfare gains from port

capacity improvements and show how they are affected by climate change at ports.

Failing to account for future environmental damage can lead to a misallocation of port

infrastructure investments.

These findings have clear policy relevance. Investments in climate-resilient trans-

portation networks can not only reduce the direct costs of disruptions but also allevi-

ate secondary congestion effects on unaffected regions. Policymakers should prioritize
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adaptive strategies that account for dynamic firm behaviors, transportation network

spillovers, and future climate at ports. While I only focus on maritime trade, future re-

search could extend this analysis by incorporating additional modes of transport and

leveraging the rich set of climate data currently available to study a wider array of ex-

treme weather events, offering a more comprehensive picture of global supply chain

vulnerability to climate risks affecting trade infrastructure.
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Appendix
A ANECDOTAL EVIDENCE

Marine Safety Information Bulletin
Commander
U.S. Coast Guard
Sector Key West
100 Trurnbo Road

Key West, FL 33040-6655

MSIB Number: SKW-28-24
Date: Oct7,2024
contact: LT Hailye Wilson
Phone: (305) 292-8768
Email : SKWWaterways@uscg.mil

U.S. COAST GUARD SECTOR KEY WEST PORT CONDITION ZULU

on october g,2o24,at 0600 (6:00 AM), the Captain of the Port will set Port Condition (PoRTCoN) LULU for the Port of Key west.

The shift is based on the projected arrival of sustained gale force winds (greater than 34 knots/39mph) associated with Hurricane

Milton. The table below iummarizes CoTP requirements for PoRTCON Zulu in accordance with 33 CFR 165.707:

Mariners should be aware that no "safe havens" exist within the Florida Keys for vessels to safely survive hurricane force winds or

storm surges without creating a threat to the safety of the port and public welfare. Owners/operators of vessels greater than 300 GT

desiring to remain in port throughout hurricane season who have not already submitted healy weather plans to the COTP for review

should be prepared to depart nolater than the setting of PORTCON Yankee. Remain in Port Checklists are available for review on the

Sector Key West HOMEpORT website: https:/,ihomeport.uscg.miVport-directory/key-west. Regulated facilities are reminded to

review and update their healy weather response plans to safely weather any storm that may approach the Florida Keys.

Mariners navigating through the Islamorada Snake Creek Draw Bridge are reminded that the bridge may not operate on normally

published schedules as early as 36 hours prior to forecasted storm's arrival. The bridge will not open for maritime traffic upon arrival

of gale force winds (34 knots or higher) or following a mandatory Monroe County evacuation order'

The official PORTCON and associated Marine Safety Information Bulletin (MSIB) will be set on Sector Key West's Homeport

website. As weather conditions may change rapidly, mariners are encouraged to monitor the National Weather Service's forecasts and

observations at https://www.weather.gov/key or on NOAA weather radios. For questions or additional information, call Coast Guard

Sector Key West at (305) 292-8727 or email SKW@uscg.mil.

Sincerely

J.D
Captain, U. S. Coast Guard
Captain of the Port

Requirements (annotatedfrom 33 CFR 165.707)
Hours

Prior to
Gales

Port
Condition

o Oceangoing vessels greater than 300 gross tons (GT) must

the setting of Port Condition Yankee unless authorizedby
make plans to depart no later than
ttre COTP. Vessels intending to

PORTCON Xmust contact the COTPremam ln to
Whiskey72

setting of PORTCON Yankee.
o All vessels, regulated facilities, and waterfront facilities must ensure that potential flying

debris is removed or secured. HAZMATlpollution hazards must be secured in a safe manner

o Vessels greater than 300 GT without an approval to remain in port must depart prior to the

a from waterfront areas.

48 X-Ray

Yankee
o The port is closed to all inbound vessel traffic. All vessels greater than 300 GT must have

the unless authorized the COTP24

Zulu
is closed to all vessel traffic except as specifically authorized by the COTP

facilities must cease all cargo operations, including bunkering and
o The port
o Regulated

t2

o The port will be re-opened only after satisfactory assessments of the waterways, including

critical aids to navigation verifications, have been conducted.

After
Storm's

Four
(All Clear)

This Marine Sof"ty Information Bulletin has been issued for public information and notification purposes.

Figure A.1: Example of port condition ZULU (US)

Notes: This document is the Marine Safety Information Bulletin issued on October 8, 2024, by the US
Coast Guards of Port Key West (Florida), before the landfall of Hurricane Milton.
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B DATA

In this appendix, I report all the data sources, and provide extensive details about data con-

tents, manipulation, and summary statistics. Table B.1 provides a summary of all data used in

the analysis.

Table B.1: Data sources and time coverage

Data type/variable Time coverage Source

Bills of lading (Brazil) 2014–2023 S&P Panjiva
Global port-level traffic 2019–2023 IMF PortWatch
Port capacity 2019–2023 IMF PortWatch
Tropical cyclone tracks 2014–2023 IBTrACS (Knapp et al., 2010)
Tropical cyclone climate 1980–2015/2025–2050 STORM (Bloemendaal et al., 2020a,b)
Regions - GAUL1
Distances (land) - Great-circle distance
Distances (sea) - Eurostat SeaRoute
Population 2012–2020 Rossi-Hansberg and Zhang (2025)
GDP per capita (2017 PPP) 2012–2020 Rossi-Hansberg and Zhang (2025)
Nightlights 2015 Li et al. (2020)
Historical population 1950 HYDE 3.3 (Klein Goldewijk, 2024)
Terrain Ruggedness Index - Amatulli et al. (2018)
PPI Wold Bank Port Investments 2019–2023 World Bank (2025)

Notes: This table reports all the data sources used in the analysis, by data type/variable. Appendices
B.1 to B.5 provide additional information.

B.1 BILL OF LADING DATA – BRAZIL (2014–2023)

Source and coverage. I use firm-to-firm bills of lading assembled by S&P Panjiva for all mar-

itime import transactions recorded as entering a Brazilian port between June 2014 and De-

cember 2023. The raw data contains shipment identifiers (panjivaRecordId), the date the

shipment entered the first domestic port (shpmtDate), company names for the consignee/im-

porter and shipper/exporter (conName, shpName), party address fields (street, city, state/re-

gion, postal code, country), party type (shpType, conType: Real Cargo Owner vs. NVO/For-

warder), maritime ports of lading/origin and unlading/destination (names and UNLOCODEs),

transport mode, indicators for containerization, and physical/value measures (TEU volume,

gross weight in kg, USD value).53 The empirical analysis focuses on maritime shipments only;

if non-maritime records are present in the extract, they are dropped.

Defining geocoded establishments (firms). Empty strings in Panjiva address fields are treated

53The data also contains Panjiva-assigned establishment identifiers for the consignee and shipper
(conPanjivaId, shpPanjivaId), but these are prone to errors. E.g., small variations in street names
can lead to wrongly-assigned separate establishment identifiers. I address this issue by constructing
new establishment identifiers, based on (cleaned) company names and addresses.
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as missing. For both sides of the transaction I build full-address tokens by concatenating the

available street, city, state/region, postal code, and country fields. These tokens are used for

geocoding and as intermediate keys to define establishments. Company names are standard-

ized prior to consolidation: I transliterate non-Latin scripts to Latin and then to ASCII, har-

monize special characters, and remove legal-form affixes using a comprehensive cross-walk

of entity-type abbreviations. The resulting sanitized parent names are then passed through a

generic string-cleaning routine.

I geocode the full addresses via the ArcGIS service (through tidygeocoder). Minimum

information for geolocalization is a city or postal code; street addresses are not required. I de-

fine a firm as the set of co-located establishments belonging to the same (cleaned) parent name.

Concretely, within each parent, I cluster all geocoded points using single-linkage hierarchical

clustering with a 10km cutoff and assign a unique establishment identifier to each cluster (con-

structed from the parent name and the cluster centroid). I then overlay cluster centroids onto

GAUL1 polygons to assign a unique GAUL1 location identifier to each buyer and supplier.

Observations without a city/postal code or without a successful GAUL1 assignment are ex-

cluded.

Defining geocoded ports. I parse Panjiva’s port names and countries, normalize them via the

same transliteration/ASCII pipeline used for firm names, and remove unknown UNLOCODEs.

For a limited set of ports with commonly used variants, I apply targeted name corrections (e.g.,

major Ukrainian, Chinese, and North African ports). I then construct port address strings (UN-

LOCODE, cleaned name, country) and geocode them via ArcGIS to obtain coordinates. When

multiple geometries are observed under the same UNLOCODE, I retain only UNLOCODEs

mapping to a single unique geometry. Finally, to facilitate linkage with global port-call data,

I match cleaned port names within country to IMF PortWatch ports using fuzzy matching

(Jaro–Winkler). I keep exact post-cleaning matches and store the PortWatch identifier for those

ports.

Useful identifiers. I construct a set of unit identifiers used throughout the analysis. Let b de-

note a Brazilian buyer establishment and s a foreign supplier establishment. The buyer–supplier

establishment pair is {b, s}. Each shipment lists a port of lading po and a port of unlading pd,

which define a sea route. The identifiers are:

• BS.establishment.id: buyer-supplier establishment pair;

• route.id: route (po, pd);
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• BS.route.id: buyer-supplier establishment pair × route (po, pd).

Calendar time is built from shipment dates by constructing a complete daily grid between the

first and last observed shipment dates and then indexing months by their first day (time.ym).

These normalized indices are merged back to shipments.

Aggregation and sample restrictions. I exclude records with missing parent party identi-

fiers (conPanjivaId or shpPanjivaId), with poorly geocoded establishments, or transit-

ing through poorly geocoded ports. I keep only shipments where (i) both parties are labeled

as Real Cargo Owner (i.e., I exclude NVO/Forwarder on either side), and (ii) the buyer geocodes

to Brazil and the supplier does not geocode to Brazil.

I build two main aggregated datasets, at the BS.establishment.id (relationship) level,

and at the BS.route.id (relationship-route) level. For each relationship (relationship-route)

identifier, I aggregate shipment quantities and values at the monthly level. I compute the sum

of USD value, gross weight (kg), and TEU volume, the number of distinct shipments, and

the number of containerized shipments. I finally drop infrequent relationships (relationship-

routes), by keeping only BS.establishment.id (BS.route.id) identifiers that trade at

least two months within the sample.

Table B.2 reports the effect of the data cleaning procedure on firm- and relationship-related

variables. Table B.3 focuses on ports and routes. Table B.4 presents summary statistics on

firm-to-firm trade when infrequent relationships are removed, while Table B.5 presents sum-

mary statistics on firm-to-firm trade when infrequent relationships or relationships-routes are

removed.

Table B.2: Data Cleaning - Firms and Relationships

Desc. Num. Shipments Num. Importers Num. Exporters Num. Rel.

Full Sample
(1) Raw Panjiva 9017154 44556 37973 185708
(2) Drop missing parent company ID 8950897 44509 37868 185355
(3) Drop poorly geolocalized firms 2205290 27136 31537 126811
(4) Drop poorly reported ports 2204392 27133 31526 126754
(5) Keep Brazilian imp., foreign exp. 2197635 26876 31027 125636
(6) Drop NVO/forwarders 1039012 17692 23291 73551

Estimation Sample
(7) Drop infrequent rel. 994069 10787 13813 38665
(8) Drop infrequent rel.-routes 938570 9748 12500 33304

Note: This table reports the effect of the data cleaning procedure on firm-related variables. Firms refer to ge-
olocalized establishments. ”Num. Shipments” refers to the number of distinct shipments, as identified by the bill of
lading ID. ”Num. Importers” refers to the number of establishments importing goods. ”Num. Exporters” refers to
the number of establishments exporting goods. ”Num. Rel.” refers to the number of trading establishment pairs.
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Table B.3: Data Cleaning - Maritime Ports and Routes

Desc. Num. Exit Ports Num. Entry Ports Num. Routes Num. Rel.-Routes

Full Sample
(1) Raw Panjiva 1005 52 5877 576861
(2) Drop missing parent company ID 963 52 5430 572937
(3) Drop poorly geolocalized firms 483 44 2011 242377
(4) Drop poorly reported ports 474 43 1970 242005
(5) Keep Brazilian imp., foreign exp. 467 43 1950 240440
(6) Drop NVO/forwarders 442 42 1822 126684

Estimation Sample
(7) Drop infrequent rel. 366 37 1493 91046
(8) Drop infrequent rel.-routes 247 35 1000 50932

Note: This table reports the effect of the data cleaning procedure on route-related variables. Routes refer to port of
exit-port of entry pairs. ”Num. Exit Ports” refers to the number of port of lading, as identified by the UN/LOCODE.
”Num. Entry Ports” refers to the number of port of unlading, as identified by UN/LOCODE. ”Num. Routes” refers to the
number of observed port pairs. ”Num. Rel.Routes” refers to the number of importer-exporter-route triplets.

Table B.4: Summary Statistics - Relationship Sample

Desc. Mean 25% 50% 75% 90% 95%

Per Buyer - Month
Num. transactions 6.20 1.00 2.00 4.00 10.00 19.00
Num. suppliers 1.71 1.00 1.00 2.00 3.00 4.00
Num. exit ports 1.73 1.00 1.00 2.00 3.00 5.00
Num. entry ports 1.13 1.00 1.00 1.00 1.00 2.00
Num. routes 1.78 1.00 1.00 2.00 3.00 5.00
Log weight (kg) 11.01 9.93 10.80 11.99 13.22 14.13
Log volume (TEU) 1.58 0.69 1.39 2.48 3.53 4.23
Log value (USD) 12.12 11.02 11.94 13.06 14.22 15.01

Per Supplier - Month
Num. transactions 5.90 1.00 2.00 4.00 10.00 18.00
Num. buyers 1.63 1.00 1.00 1.00 3.00 4.00
Num. exit ports 1.34 1.00 1.00 1.00 2.00 3.00
Num. entry ports 1.28 1.00 1.00 1.00 2.00 3.00
Num. routes 1.55 1.00 1.00 2.00 3.00 4.00
Log weight (kg) 10.72 9.73 10.58 11.71 12.94 13.81
Log volume (TEU) 1.48 0.69 1.39 2.30 3.37 4.06
Log value (USD) 12.15 11.06 12.00 13.11 14.27 15.07

Per Relationship - Month
Num. transactions 3.62 1.00 1.00 2.00 5.00 10.00
Num. exit ports 1.15 1.00 1.00 1.00 2.00 2.00
Num. entry ports 1.04 1.00 1.00 1.00 1.00 1.00
Num. routes 1.18 1.00 1.00 1.00 2.00 2.00
Log weight (kg) 10.57 9.77 10.34 11.46 12.55 13.34
Log volume (TEU) 1.23 0.69 0.69 1.95 2.94 3.58
Log value (USD) 11.79 10.85 11.63 12.61 13.68 14.42

Note: The table reports summary statistics of the relationship sam-
ple. ”Num. Shipments” refers to the number of distinct shipments,
as identified by the bill of lading ID. ”Num. exit ports” refers to the
number of ports of exit, as identified by the UN/LOCODE. ”Num. en-
try ports” refers to the number of ports of entry, as identified by the
UN/LOCODE. ”Num. routes” refers to the number of pairs or ports
of exit and entry. ”Log weight (kg)” refers to the total weight of ship-
ments, in kilograms. ”Log volume (TEU)” refers to the total volume of
shipments, in Twenty-foot Equivalent Units. ”Log value (USD)” refers
to the total value of shipments, in current USD.

52



Table B.5: Summary Statistics - Relationship-Route Sample

Desc. Mean 25% 50% 75% 90% 95%

Per Buyer - Month
Num. shipments 6.46 1.00 2.00 4.00 11.00 20.00
Num. suppliers 1.69 1.00 1.00 2.00 3.00 4.00
Num. exit ports 1.68 1.00 1.00 2.00 3.00 4.00
Num. entry ports 1.10 1.00 1.00 1.00 1.00 2.00
Num. routes 1.71 1.00 1.00 2.00 3.00 5.00
Log weight (kg) 11.02 9.93 10.81 12.00 13.22 14.10
Log volume (TEU) 1.61 0.69 1.39 2.48 3.53 4.26
Log value (USD) 12.13 11.02 11.96 13.07 14.24 15.04

Per Supplier - Month
Num. shipments 6.11 1.00 2.00 4.00 10.00 18.00
Num. buyers 1.60 1.00 1.00 1.00 3.00 4.00
Num. exit ports 1.29 1.00 1.00 1.00 2.00 3.00
Num. entry ports 1.25 1.00 1.00 1.00 2.00 3.00
Num. routes 1.49 1.00 1.00 1.00 2.00 3.00
Log weight (kg) 10.72 9.73 10.59 11.72 12.94 13.80
Log volume (TEU) 1.50 0.69 1.39 2.30 3.40 4.09
Log value (USD) 12.16 11.07 12.01 13.13 14.29 15.09

Per Relationship - Month
Num. shipments 3.82 1.00 1.00 3.00 6.00 10.00
Num. exit ports 1.14 1.00 1.00 1.00 1.00 2.00
Num. entry ports 1.03 1.00 1.00 1.00 1.00 1.00
Num. routes 1.15 1.00 1.00 1.00 2.00 2.00
Log weight (kg) 10.57 9.76 10.37 11.48 12.56 13.33
Log volume (TEU) 1.26 0.69 1.10 2.08 3.00 3.64
Log value (USD) 11.81 10.85 11.64 12.64 13.72 14.47

Note: The table reports summary statistics of the relationship-route
sample. It contains only treated relationships. ”Num. Shipments”
refers to the number of distinct shipments, as identified by the bill of
lading ID. ”Num. exit ports” refers to the number of ports of exit, as
identified by the UN/LOCODE. ”Num. entry ports” refers to the num-
ber of ports of entry, as identified by the UN/LOCODE. ”Num. routes”
refers to the number of pairs or ports of exit and entry. ”Log weight
(kg)” refers to the total weight of shipments, in kilograms. ”Log vol-
ume (TEU)” refers to the total volume of shipments, in Twenty-foot
Equivalent Units. ”Log value (USD)” refers to the total value of ship-
ments, in current USD.
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B.2 GLOBAL PORT-LEVEL TRAFFIC (2019–2023)

Source and coverage. I use the IMF PortWatch daily data on port activity and estimated trade

flows for 1,666 global ports from 2019 to 2023. The data reports, at a daily × port level, counts

of port calls and estimated import/export trade flows (in metric tons) disaggregated by ship

type (container, dry bulk, general cargo, tanker, and ro–ro).54 These indicators are derived from

raw AIS traces processed by the PortWatch team following the methodology in Arslanalp et al.

(2021).55 I link PortWatch ports to the Panjiva port universe using the fuzzy name matching

described in Appendix B.1, which yields a stable mapping between PortWatch port IDs and

UNLOCODEs. To avoid ambiguous joins, I retain only PortWatch IDs that map to a single

UNLOCODE. The resulting linked sample contains 621 ports that can be used jointly with the

Brazilian bill-of-lading data.

Construction of daily traffic measures. For each port–day (p, t), I compute (i) total vessel

calls, (ii) container vessel calls, (iii) total traffic in TEU, and (iv) container traffic in TEU. To

construct daily total vessel calls, I sum the PortWatch port-call counts across all ship types.

To construct TEU traffic estimates, I sum import/export series across all ship types within

port–day and rescale it by a factor of 1/10 so that the stored variables represent average TEU

units.56 Container vessel calls and TEU traffic estimates are constructed using the same logic,

although they only account for container ships, and containerized import/export weights.

Unless noted, I use total daily TEU as the proxy for port traffic; container-specific TEU and

vessel-call measures are used for robustness and by-ship-type checks. When higher-frequency

noise is undesirable, I aggregate these series to the relevant time unit (e.g., week) by summa-

tion, as indicated in the empirical design.

Port capacity. I measure port capacity from PortWatch daily TEU flows. For each port, I

compute the 99th percentile of daily total TEU (imports + exports) over 2019–2023, and I use

this as the capacity proxy Kp. Unless noted, I use a normalized capacity measure (capacity

divided by the global maximum).

54Container ships carry standardized containers, mostly containing manufactured goods. Dry bulk
carriers transport unpackaged commodities such as coal, iron ore, and grain in large holds. General
cargo vessels move breakbulk items – often on pallets or in crates – using multipurpose ships with
their own gear. Tankers carry liquid bulk – crude oil, refined products, chemicals, or liquefied gases –
in segregated tanks. Ro-ro ships carry wheeled cargo such as cars and trucks that roll on and off via
ramps.

55Downloaded from IMF PortWatch. Estimates are based on AIS data via the United Nations Global
Platform; see Arslanalp et al. (2021) for details.

56Twenty-foot equivalent units carry on average 10 tons of goods.
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B.3 TROPICAL CYCLONE TRACKS (2014–2023)

Source and coverage. I use the International Best Track Archive for Climate Stewardship (IB-

TrACS) global archive (Knapp et al., 2010). IBTrACS provides a harmonized record of tropical

cyclones with 3-hourly observations and ≈ 0.1◦ track coordinates. I extract all storms observed

between 2014 and 2023 within 200km of global coastlines (measured by the distance between

the coast, and the eye of the cyclone). The analysis centers on cyclones that affect ports. Oper-

ationally, I evaluate wind exposure at geocoded ports that export to Brazil (Appendix B.1) and

retain, for 2014–2023, the set of storms whose modeled wind fields intersect at least one port.

For descriptive figures (e.g., Figure 2a), I display cyclone footprints within 200km of global

coastlines to emphasize coastal exposure.

Wind fields and exposure surfaces. I use the StormR package to handle tropical cyclone tracks

data. For each storm I compute gridded surfaces of (i) maximum sustained wind (MSW) and

(ii) an exposure index conditional on winds exceeding 18m/s (hours of exposure). The 18m/s

threshold (≈ 35 knots) aligns closely with the 34-knot operational threshold commonly used

for port closure conditions (e.g., condition ZULU in the US).

Port-level extraction and variables. For each port–storm pair, I extract cell means at the port’s

coordinates from the MSW and exposure rasters, yielding (i) the port’s expected sustained

wind in m/s and (ii) the storm-specific exposure index above 18m/s. I also record the first

observed timestamp of the storm, which serves as the shock time for this event to avoid antic-

ipation from port authorities/firms. Ports with missing raster values are set to zero exposure

for that storm.

Port-level shocks. The resulting dataset at the port × storm level is later merged to the Port-

Watch port data (Appendix B.2) at the daily level, and to the bill of lading data (Appendix B.1)

at the monthly level. These joins yield the port-level treatment indicators used in the empirical

analysis.
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Figure B.1: Wind speed profile of hurricane Harvey

Notes: This map shows the maximum sustained wind speed experienced by US counties during Hur-
ricane Harvey (23 August to 02 September 2017). The red dots represent the eye of the hurricane across
its lifespan (IBTrACS). Wind speed is modeled using the method of Willoughby et al. (2006), adjusted
for asymmetry using Chen (1994). Black dots indicate US ports that export to Brazil in the Brazilian bill
of lading data. Grey dots represent US ports that do not export to Brazil.
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Table B.6: Summary Statistics - Tropical Cyclones at Ports

Desc. Mean 10% 25% 50% 75% 90%

(a) Panjiva sample

Per Tropical Cyclone Event
Num. ports of lading 7.17 1.00 1.00 4.00 10.00 17.00
Windspeed (m/s) 25.61 19.48 20.95 24.32 28.76 33.59
Exposure - 18m/s (hours) 10.94 4.60 6.55 9.32 13.56 19.63

Per Port - Year
Num. cyclones 1.62 1.00 1.00 1.00 2.00 3.00
Windspeed (m/s) 26.77 19.51 21.76 25.26 30.04 36.05
Exposure - 18m/s (hours) 11.75 3.88 6.42 9.89 15.33 21.78

(b) Portwatch sample

Per Tropical Cyclone Event
Num. ports of lading 4.88 1.00 1.00 3.00 7.00 10.00
Windspeed (m/s) 26.37 19.55 20.74 25.23 29.75 34.60
Exposure - 18m/s (hours) 11.63 4.71 6.83 9.67 14.56 20.71

Per Port - Year
Num. cyclones 1.61 1.00 1.00 1.00 2.00 3.00
Windspeed (m/s) 26.91 19.55 21.72 25.51 30.03 36.34
Exposure - 18m/s (hours) 11.87 4.00 7.08 9.90 15.33 21.57

Note: The table reports summary statistics for the exposure of ports to trop-
ical cyclones. Panel (a) reports statistics for ports recorded in the Brazilian bill
of lading data. Panel (b) reports statistics for ports recorded in IMF Portwatch
data. ”Per Tropical Cyclone Event: Num. ports of lading” refers to the num-
ber of ports exposed to at least 18m/s of wind speed, per cyclone event. ”Per
Tropical Cyclone Event: Windspeed (m/s)” refers to the mean maximum sus-
tained wind speed experienced by ports, per cyclone event. ”Per Tropical Cy-
clone Event: Exposure - 18m/s (hours)” refers to the mean exposure of ports,
measured in hours of exposition to at least 18m/s of wind speeds, per cyclone
event. ”Per Port - Year: Num. cyclones” refers to the number of cyclones in
which the port experiences at least 18m/s of maximum sustained wind speed,
per port-year. ”Per Port - Year: Windspeed (m/s)” refers to the mean maximum
sustained wind speed from tropical cyclones experienced by ports, per port -
year. ”Per Port - Year: Exposure - 18m/s (hours)” refers to the mean exposure of
ports during tropical cyclones, measured in hours of exposition to at least 18m/s
of wind speeds, per port-year.
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B.4 TROPICAL CYCLONES CLIMATE - STORM

Source and coverage. I use the STORM tropical cyclone hazard dataset (Bloemendaal et al.,

2020a,b), which simulates 10,000 years of synthetic storm tracks to estimate wind hazards at

≈ 10km resolution. In practice, I use the global-scale .tiff files derived by Russel (2022).57 The

data consists of gridded fixed return period rasters for (i) a present-day climate (1980–2015; here-

after baseline) and (ii) a future climate scenarios consistent with RCP8.5/SSP5 (2015–2050). The

RCP8.5 scenarios correspond to the climate simulations of several climate models: CMCC-

CM2-VHR4, CNRM-CM6-1-HR, EC-EARTH3P-HR, and HADGEM3-GC31-HM. For each

scenario, STORM provides the maximum sustained wind speed (m/s) associated with a set of

return periods R = {10,20, . . . ,10,000} years.

Defining expected wind speed. For each grid cell g and scenario s, I compute a simple ex-

pected (annual) windspeed proxy by weighting the return-period rasters by their annual prob-

ability:

windspeed(s)g = ∑
r∈R

1
r

V(s)
g,r ,

where V(s)
g,r is the STORM raster of maximum sustained wind (m/s) for return period r. I

implement this by dividing each raster by its return period and summing across r ∈ R; missing

cells are treated as zeros. For display and merging, I spatially aggregate the resulting surface

to ≈ 2◦ resolution.

The baseline expected wind speed field windspeed(0) is built from the STORM “constant”

(present-day) raster. The RCP8.5 expected wind speed field windspeed(RCP8.5) is the mean of

the climate models. I define the change in tropical cyclone climate as the grid-cell difference

∆windspeedg = windspeed(RCP8.5)
g − windspeed(0)g ,

reported in (Figure 2b). Figures B.2a and B.2b report the respective baseline and RCP8.5 ex-

pected wind speed fields.

Port-level exposure (climate). To link climate hazards to ports, I buffer each port by 50km

and extract the mean expected windspeed from the baseline and RCP8.5 rasters. I implement

this both for the Panjiva-linked ports and for the IMF PortWatch global port set, yielding port-

level measures of expected cyclone windspeed under baseline and future climates. Missing

57The data is available here.
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values in the baseline raster are set to zero before extraction; extraction uses area means over

the buffer. The baseline and RCP8.5 expected wind speeds are treated as port fundamentals in

both the estimation of transportation costs (Section 5.1), and the climate change counterfactuals

(Section 5.2).

Figure B.2: Present and future (RCP8.5) tropical cyclone climates

(a) Present-day (1980-2015)

(b) RCP8.5 (2015-2050)

Notes: This map reports expected wind speeds (m/s) induced by tropical cyclones, in the present-day
(Panel a) and the future RCP8.5 scenario (Panel b) of the STORM model.
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B.5 ADDITIONAL DATA

Distances. Land route distances are approximated by great-circle distances between GAUL1

centroids. In the model calibration, I retain centroid distances only for contiguous region

pairs identified via polygon contiguity (first-order neighbors). Shortest maritime distances

between ports are computed with the Eurostat SeaRoute program; I build a directed port-to-

port matrix with entries equal to the SeaRoute shortest-path length in kilometers, and zeros

for unfeasible routes. I create a binary assignment matrix linking each port to the GAUL1

unit that contains it, and I record the (own) distance from the port to its region centroid. The

full economy-wide distance matrix used in the model calibration stacks (i) the sparse region-

to-region block, (ii) the port-to-region block (linking ports to their own region), and (iii) the

maritime port-to-port block.

Population and GDP per capita (2012-2020). For fundamentals at the regional level, I use

the global 1◦ grid from Rossi-Hansberg and Zhang (2025). I compute each GAUL1 unit’s to-

tal population by rasterizing the gridded population field and summing over the polygon

(averaging the raw population across 2012-2020). Regional GDP per capita is obtained as the

population-weighted mean of the grid-cell GDP per capita (constant 2017 PPP, averaged across

2012-2020) over the GAUL1 polygon, using the population raster as weights; both population

and GDP-per-capita aggregates are normalized by their global maxima for use in calibration

and diagnostics.

Nightlights (2015). I use the data provided by Li et al. (2020). I aggregate the 2015 harmonized

VIIRS nightlight raster to the GAUL1 polygons (sum of radiance), divide by regional popula-

tion to obtain per-capita radiance, and normalize by the global maximum. These quantities are

not used for calibration but provide an external check on the spatial allocation of activity.

Historical population (1950). To proxy historical coastal population at port, I use the HYDE 3.3

global gridded population for year 1950 at 5-arc-minute resolution (Klein Goldewijk, 2024).

For each port p, I build a 100km radius buffer, and extract the sum of 1950 inhabitants within

the buffer. I construct a share of 1950 coastal population by normalizing this count over total

population around the 621 ports used in the estimation.

Terrain Ruggedness Index (TRI). To capture hinterland topography, I use the global Terrain

Ruggedness Index based on GMTED at 30-arc-second resolution (Amatulli et al., 2018). For
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each port, I form a 20km radius buffer and extract the mean TRI over raster cells that fall

within the buffer.

PPI World Bank - Ports (2019-2023). To recover a set of port investments, I use the World

Bank PPI project data on port investments. I use all Ports projects from the World Bank’s

Private Participation in Infrastructure (PPI) database for 2019-2023 (World Bank, 2025). The

data contains the port identifier, the investment year, and total committed investment (scaled

in billions of USD) for all port infrastructure projects in which the World Bank participated. For

ports with multiple projects in the same year, I sum investment amounts to obtain a port×year

aggregate. I manually assign PortWatch IDs to recipient ports, by port names.

C ROBUSTNESS AND ALTERNATIVE SPECIFICATIONS

C.1 PORT-LEVEL DISRUPTIONS

Figure C.1: Port exposure to weak cyclones

(a) Port activity (b) Log vessel count (c) Log volume (TEU)

Notes: These panels plot the effect of exposure to tropical cyclones on daily port-level outcomes, as
specified by Equation (1). The sample is constructed analogously to the one in Section 3.2, but treatment
is defined as exposure to wind speed between 9 and 18 m/s (weak cyclones), removing any port treated
by wind speed above 18 m/s. The outcome in Panel C.1a is a binary variable, taking value 1 if at least
one vessel entered the port in period t (port activity), 0 otherwise. The outcome in Panel C.1b is the
log number of vessels using the port in period t, conditioning on the port being active. The outcome of
Panel C.1c is the log volume TEU transiting through the port in period t, conditioning on the port being
active. Standard errors are clustered at the port level. The bars correspond to 95% confidence intervals.
Black dots are point estimates significant at the 5% level, gray squares are point estimates significant at
the 10% level, and empty dots are point estimates non-significant at the 10% level.
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(a) Port activity (by exposure) (b) Port activity (by ship type)

Figure C.2: The impact of exposure to cyclones on port operations

Notes: These panels plot the effect of exposure to tropical cyclones on daily port-level outcomes, as
specified by Equation (1). The outcome of both panels is a binary variable, taking value 1 if at least one
vessel entered the port in period t (port activity), 0 otherwise. In Panel C.2a, I estimate Equation (1) by
splitting the treated group by the duration of exposure to at least 18 m/s: below and above 12 hours of
exposure. In Panel C.2b, I estimate Equation (1) using port–ship-type–specific outcomes: containerized
vs. other ships. Standard errors are clustered at the port level. The bars correspond to 95% confidence
intervals. Black dots are point estimates significant at the 5% level, gray squares are point estimates
significant at the 10% level, and empty dots are point estimates non-significant at the 10% level.
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C.2 ROUTE CHOICE

(a) Route activity (b) Log weight (kg)

Figure C.3: Port exposure to cyclones & route choice (first vs. subsequent treatments)

Notes: These panels plot the effect of port exposure to tropical cyclones on monthly firm-to-firm-route-
level outcomes, as specified by Equation (2). The treatment variable is interacted with two indicators
variable, taking value 1 if the treatment is respectively (i) the first treatment experienced by the rela-
tionship (b, s), or (ii) subsequent treatments. The outcome in Panel C.3a is a binary variable, taking the
value 1 if at least one shipment is observed for the trading pair through route r at month t (active route),
and 0 otherwise. The outcome in Panel C.3b is the log total weight (kg) of shipments of the relation-
ship using route r at month t, conditioned on the relationship-route being active. Regressions include
relationship–month fixed effects, and control for time dummies interacted with relationship-routes’ pre-
treatment characteristics. Standard errors are clustered at the relationship level. The bars correspond
to 95% confidence intervals. Black dots are point estimates significant at the 5% level, gray squares are
point estimates significant at the 10% level, and empty dots are point estimates non-significant at the
10% level.
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(a) Route activity (b) Log weight (kg)

Figure C.4: Port exposure to cyclones & route choice (by good type)

Notes: These panels plot the effect of port exposure to tropical cyclones on monthly firm-to-firm-route-
level outcomes, as specified by Equation (2). The treatment variable is interacted with two indicators
variables, taking value 1 if the relationship-route traded respectively (i) only containerized goods, or (ii)
at least one non-containerized good, in the 5-month period preceding the shock. The outcome in Panel
C.4a is a binary variable, taking the value 1 if at least one shipment is observed for the trading pair
through route r at month t (active route), and 0 otherwise. The outcome in Panel C.4b is the log total
weight (kg) of shipments of the relationship using route r at month t, conditioned on the relationship-
route being active. Regressions include relationship–month fixed effects, and control for time dummies
interacted with relationship-routes’ pre-treatment characteristics. Standard errors are clustered at the
relationship level. The bars correspond to 95% confidence intervals. Black dots are point estimates
significant at the 5% level, gray squares are point estimates significant at the 10% level, and empty dots
are point estimates non-significant at the 10% level.
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C.3 FIRM-TO-FIRM DISRUPTIONS

(a) Relationship activity (b) Log weight (kg)

Figure C.5: Port exposure to cyclones & firm-to-firm relationship (first vs. subsequent
treatments

Notes: These panels plot the effect of port exposure to tropical cyclones on monthly firm-to-firm-level
outcomes, as specified by Equation (3). The outcome in Panel C.5a is a binary variable, taking the
value 1 if at least one shipment is observed for the trading pair at month t (active relationship), and
0 otherwise. Relationship activity is conditioned on the entry of both the buyer and the supplier. The
outcome in Panel C.5b is the log total weight of shipments traded by the relationship, conditioning on
activity. Regressions include buyer–time and supplier–time fixed effects, and control for time dummies
interacted with relationships’ pre-treatment characteristics. Standard errors are clustered at the buyer
level. The bars correspond to 95% confidence intervals. Black dots are point estimates significant at
the 5% level, gray squares are point estimates significant at the 10% level, and empty dots are point
estimates non-significant at the 10% level.

(a) Relationship activity (b) Log weight (kg)

Figure C.6: Port exposure to cyclones & firm-to-firm relationship (by good type)

Notes: These Panels plot the effect of port exposure to tropical cyclones on monthly firm-to-firm-level
outcomes, as specified by Equation (3). The outcome in Panel C.6a is a binary variable, taking the
value 1 if at least one shipment is observed for the trading pair at month t (active relationship), and
0 otherwise. Relationship activity is conditioned on the entry of both the buyer and the supplier. The
outcome in Panel C.6b is the log total weight of shipments traded by the relationship, conditioning on
activity. Regressions include buyer–time and supplier–time fixed effects, and control for time dummies
interacted with relationships’ pre-treatment characteristics. Standard errors are clustered at the buyer
level. The bars correspond to 95% confidence intervals. Black dots are point estimates significant at
the 5% level, gray squares are point estimates significant at the 10% level, and empty dots are point
estimates non-significant at the 10% level.
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D THEORY

D.1 PROOFS

Proof: Proposition 1. Denote by λj(ϕ,r) = cj
z(ϕ) ∏|Br |

k=1 drk−1,rk ∏|Pr |
m=1 tp(r)m the effective costs of

using input from supplier j in technique ϕ, along route r. Consider the probability that the

effective cost of supplier j ∈ Mn′ available to i ∈ Mn through route r is strictly lower than a

threshold λ,

P(λj(ϕ,r) ≤ λ) = P

(
cj

z(ϕ)

|Br |

∏
k=1

drk−1,rk

|Pr |

∏
m=1

tp(r)m ≤ λ

)
= Fr(λ).

Integrating Fr over realizations of z and tp(r)1
, · · · , tp(r)M

, we obtain that the number of poten-

tial suppliers that deliver effective cost weakly less than λ through route r follows a Poisson

distribution with mean

Λjr =
∫ ∞

0

[∫ ∞

1
· · ·
∫ ∞

1
Fr(λ)dFp(r)1

(θ) · · ·dFp(r)M
(θ)

]
dFr(z)

=
∫ ∞

0

[∫ ∞

1
· · ·
∫ ∞

1

[∫ ∞

0
1

(
cj

z(ϕ)

|Br |

∏
k=1

drk−1,rk

|Pr |

∏
m=1

tp(r)m ≤ λ

)
dFn′(cj)

]
dFp(r)1

(θ) · · ·dFp(r)M
(θ)

]
ξan′z−ξ−1dz

= an′λξ
|Br |

∏
k=1

d−ξ
rk−1,rk

∫ ∞

0

[∫ ∞

1
· · ·
∫ ∞

1

[∫ ∞

0
1
(
cj ≤ u

)
dFn′(cj)

] |Pr |

∏
m=1

t−ξ
p(r)m

dFp(r)1
(θ) · · ·dFp(r)M

(θ)

]
ξu−ξ−1du

= an′λξ
|Br |

∏
k=1

d−ξ
rk−1,rk

[∫ ∞

1

∫ ∞

1
· · ·
∫ ∞

1

[∫ ∞

0
c−ξ

j dFn′(cj)

] |Pr |

∏
m=1

t−ξ
p(r)m

dFp(r)1
(θ) · · ·dFp(r)M

(θ)

]
ξs−ξ−1ds

= an′λξ c̄−ξ
j

|Br |

∏
k=1

d−ξ
rk−1,rk

|Pr |

∏
m=1

t̄−ξ
p(r)m

,

(27)

where

c̄−ξ
j =

∫ ∞

0
c−ξ

j dFn′(cj) and t̄−ξ
p(r)m

=
∫ ∞

1
t−ξ

p(r)m
dFp(r)m(θ) (28)

The second equality follows when applying the transformation

zλ/

(
|Br |

∏
k=1

drk−1,rk

|Pr |

∏
m=1

tp(r)m

)
= u,

while the third equality follows when applying the transformation u/cj = s. Therefore, num-

ber of potential suppliers along route r that deliver effective cost strictly greater than λ is such

that:

P(λj(ϕ,r) > λ) = e−Λjr = e−an′λ
ξ c̄−ξ

j ∏|Br |
k=1 d−ξ

rk−1,rk ∏|Pr |
m=1 t̄−ξ

p(r)m . (29)
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Consider now the cost distribution of firm i ∈ Mn with a supplier j ∈ Mn′ along route r. Using

the marginal cost of firm i, one obtains

P (ci(ϕ,r) > c) = P
(

w1−α
n
an

(
τn(i)n(j)(r)

cj

z(ϕ)

)α

> c
)

= P
(

λj(ϕ,r) >
(

anwα−1
n c

) 1
α

)
= exp

[
−
(

an′c
ξ
α

(
anwα−1

n

) ξ
α
|Br |

∏
k=1

d−ξ
rk−1,rk

|Pr |

∏
m=1

t̄−ξ
p(r)m

c̄−ξ
j

)]
.

(30)

Then the probability that firm i’s minimal cost from sourcing from n′ through route r is higher

than a threshold, P (ci(ϕ,r)min,r > c) is as follows:

P (ci(ϕ,r)min,r > c) = P
(

λj(ϕ,r)min,r >
(

anwα−1
n c

) 1
α

)
= exp

[
−an′c

ξ
α

(
anwα−1

n

) ξ
α
|Br |

∏
k=1

d−ξ
rk−1,rk

|Pr |

∏
m=1

t̄−ξ
p(r)m

c̄−ξ
n′

]
.

(31)

Consider finally the minimum cost at which firm i can produce (sourcing from any supplier

through any route r ∈ R), given realizations of an:

P(ci(ϕ,r)min,r∈R > c) = ∏
r∈R

P (ci(ϕ,r)min,r > c)

= ∏
r∈R

exp

[
−an′c

ξ
α

(
anwα−1

n

) ξ
α
|Br |

∏
k=1

d−ξ
rk−1,rk
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∏
m=1

t̄−ξ
p(r)m

c̄−ξ
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]
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[
−
(

anwα−1
n

) ξ
α

(
∑
n′

an′ c̄−ξ
n′ ∑

r∈Rn′n

|Br |

∏
k=1

d−ξ
rk−1,rk

|Pr |

∏
m=1

t̄−ξ
p(r)m

)
c

ξ
α

]
.

(32)
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which is Weibull distributed. It remains to characterize c̄n and θ̄r, both moments of the respec-

tive marginal cost and trade cost distributions. Consider first

c̄−ξ
n =

∫ ∞

0
c−ξd

{
1 − exp

[
−
(

anwα−1
n

) ξ
α

(
∑
n′
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|Br |

∏
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d−ξ
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|Pr |

∏
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ξ
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|Pr |

∏
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t̄−ξ
p(r)m

)α

Γ (1 − α) .

(33)

The second equality follows from applying the transformation

anwα−1
n

(
∑
n′

an′ c̄−ξ
n′ ∑

r∈Rn′n

|Br |

∏
k=1

d−ξ
rk−1,rk

|Pr |

∏
m=1

t̄−ξ
p(r)m

) α
ξ

c = u.

The third equality follows from applying the transformation v = u
ξ
α .

Moreover, t̄−ξ
p(r)m

follows immediately from its definition and the Pareto assumptions on its

distribution:

t̄−ξ
p(r)m

=
∫ ∞

1
t−ξ

p(r)m
dFp(r)m(θ)

=
∫ ∞

1
t−ξ

p(r)m
d{1 − θ−ψp(r)m }

= t(Ξ,Kp)
−ξ

ψp(r)m

ψp(r)m + ξ
.

(34)

Proof: Corollary 1. From the cost distribution of firm i ∈ Mn′ sourcing from route r, the number

of suppliers located in n and using route r available to firm i in region n′, such that i achieves

a cost below c is distributed Poisson with parameter

ρi,r = anc
ξ
α

(
an′wα−1

n′

) ξ
α
|Br |

∏
k=1

d−ξ
rk−1,rk

|Pr |

∏
m=1

t̄−ξ
p(r)m

c̄−ξ
n . (35)
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Moreover, from the cost distribution of firm i ∈ Mn′ sourcing from any route, the number of

suppliers available to firm i from any route, such that i achieves a cost below c is distributed

Poisson with parameter

ρi =
(

an′wα−1
n′

) ξ
α

(
∑̃
n

añ c̄−ξ
ñ ∑

r∈Rñn′

|Br |

∏
k=1

d−ξ
rk−1,rk

|Pr |

∏
m=1

t̄−ξ
p(r)m

)
c

ξ
α . (36)

The probability that a firm i in location n (able to deliver costs below c) supplies from location

n′ through route r is the ratio of ρi,r and ρi:

πi,r =
anc

ξ
α

(
an′wα−1

n′

) ξ
α

∏|Br |
k=1 d−ξ

rk−1,rk ∏|Pr |
m=1 t̄−ξ

p(r)m
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) ξ
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rk−1,rk ∏|Pr |
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p(r)m
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ξ
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=
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k=1 d−ξ

rk−1,rk ∏|Pr |
m=1 t̄−ξ

p(r)m

∑ñ añ c̄−ξ
ñ ∑r∈Rñn ∏|Br |

k=1 d−ξ
rk−1,rk ∏|Pr |

m=1 t̄−ξ
p(r)m

(37)

Note that the probability of sourcing from r is the same for any firm in n′. Since there are a

continuum of firms in n′, πi,r is also the bilateral trade share of route r in the total absorption of

goods of destination n′, denoted πn′,r.

Proof: Corollary 2

πnn′ = ∑
r∈Rnn′

πn′,r

=
an c̄−ξ

n τ
−ξ
nn′

∑ñ añ c̄−ξ
ñ τ

−ξ
nñ

(38)

where

τnn′ =

(
∑

r∈Rnn′

(
|Br |

∏
k=1

d−ξ
rk−1,rk

)(
|Pr |

∏
m=1

ψp(r)m

ψp(r)m + ξ

))− 1
ξ

(39)

D.2 CLOSING THE MODEL

Labor market clearing: Labor demand for a firm i in location n is given by li = (1 − α)yici/wn.

Plugging this condition into the labor market clearing gives:

Ln =
∫

i∈Mn

lidi ⇒ wnLn

1 − α
=
∫

i∈Mn

yicidi. (40)
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Good market clearing:

yi = Lnqi + ∑
n′

∫
j∈Mn′

τn(j)n(j)xijdj, xij = xj × 1{i = i∗} (41)

Multiplying both sides by marginal costs cj and aggregating over firms in Mn′ :

∫
i∈Mn

ciyidi︸ ︷︷ ︸
(1) Supply

= Ln

∫
i∈Mn

ciqidi︸ ︷︷ ︸
(2) Final good demand

+
∫

i∈Mn

ci

[
∑
n′

∫
j∈Mn′

τn(i)n(j)(xj × 1{i = i∗})dj

]
di︸ ︷︷ ︸

(3) Intermediate input demand

. (42)

Term (1) simplifies using the labor market clearing condition,
∫

i∈Mn
ciyidi = wnLn/(1 − α).

Term (2) simplifies as follows: With isoelastic preferences and monopolistic competition, house-

holds in region n demand qj = qn pσ
n p−σ

j , where pi = ci
σ

σ−1 . Realizing that qn = (wn + Πn)/pn,

where wn is the wage rate and Πn is the per-capita profits of firms in n rebated to labor, implies:

Ln

∫
i∈Mn

ciqidi = Ln(wn + Πn)pσ−1
n

(
σ

σ − 1

)−σ ∫
i∈Mn

c1−σ
i di

= Ln(wn + Πn)

((∫
i∈Mn

p1−σ
i di

) 1
1−σ

)σ−1(
σ

σ − 1

)−σ ∫
i∈Mn

c1−σ
i di

= Ln(wn + Πn)

(
σ

σ − 1

)−1(∫
i∈Mn

c1−σ
i di

)−1 ∫
i∈Mn

c1−σ
i di

= Ln(wn + Πn)σ̃
−1.

(43)

[Note: term (2) simplifies also easily when considering that qn pn =
∫

i∈Mn
σ̃ciqidi, where σ̃ =

σ/(σ − 1), and qn pn = wn + Πn.] It remains to characterize per-capita profit rebated to house-

holds in region n. Note that firms only gain profits from selling final goods to local households:

Profiti = piqiLn − ciqiLn. (44)

Therefore, total profit per capita (aggregating over all firms in Mn) yields:

Πn = L−1
n

∫
i∈Mn

Ln(piqi − ciqi)di

=
∫

i∈Mn

(σ̃ciqi − ciqi)di

= (σ̃ − 1)
∫

i∈Mn

ciqidi

= (σ̃ − 1)σ̃−1qn pn

=
1
σ
(wn + Πn).

(45)
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Solving for per-capita profits yields Πn =
wn

σ−1 . Therefore, term (2) simplifies to:

Ln

∫
i∈Mn

ciqidi = Ln

(
wn +

wn

σ − 1

)
σ̃−1

= Lnwn.
(46)

Term (3) simplifies as follows: Firms demand xj =
(1−α)yjcj
ciτn(i)n(j)

units of intermediate inputs. This

implies:

∫
i∈Mn

ci

(
∑
n′

∫
j∈Mn′

τnn′(xj × 1{i = i∗})dj

)
di = α

∫
i∈Mn

(
∑
n′

∫
j∈Mn′

1{i = i∗}yjcjdj

)
di

= α∑
n′

∫
j∈Mn′

1{i∗ ∈ Mn}yjcjdj

= α∑
n′

πnn′

∫
j∈Mn′

yjcjdj

= α∑
n′

πnn′
wn′ Ln′

1 − α

(47)

Putting terms (1), (2) and (3) together yields the following system for region-level wages:

wnLn = ∑
n′

πnn′wn′ Ln′ . (48)

Finally, to obtain traffic, we recover the value of bilateral flows (i.e. the level of expenditures

from firms in n′ to firms in n):

Xnn′ =
∫

i∈Mn

∫
j∈Mn′

ciτnn′(xj × 1{i = i∗})djdi

= α
∫

i∈Mn

∫
j∈Mn′

1{i = i∗}yjcjdjdi

= α
∫

j∈Mn′
1{i∗ ∈ Mn}yjcjdj

= απnn′

∫
j∈Mn′

yjcjdj

= απnn′
wn′ Ln′

1 − α

(49)

D.3 GENERAL EQUILIBRIUM: DEFINITION

Given a geography G = {N ,P ,L,M,A,D,K,Ψ} and a set of model parameters {σ,α,ξ,λ1,λ2,λ3},

an equilibrium is defined as a distribution of wages and factory-gate prices {wn, c̄n}n∈N , such

that:

1. Given the equilibrium transportation network δll′ ∈ {δll′}l,l′∈N∪P×N∪P , (i) consumers
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maximize utility; (ii) firms choose the techniques and the routes that minimize costs,

and markups that maximize profits; and (iii) market clears.58

2. Given the transportation network fundamentals {D,K} an equilibrium prices, the equi-

librium transportation network δll′ ∈ {δll′}l,l′∈N∪P×N∪P is determined by the equilib-

rium levels of traffic {Ξp}.

This leads the equilibrium to be characterized by the following set of equations:59

wnLn =
1 − α

α ∑
n′

Xnn′ (wage bill)

πnn′ =
an c̄−ξ

n τ
−ξ
nn′

∑ñ añ c̄−ξ
ñ τ

−ξ
ñn′

(bilateral trade shares)

c̄−ξ
n = aξ

nw(α−1)ξ
n

(
∑̃
n

añ c̄−ξ
ñ τ

−ξ
ñn

)α

Γ (1 − α) (factory-gate cost indices)

[τnn′ ] =


1 if n = n′[
(I − ∆)−1]◦(− 1

ξ ) otherwise
(transportation costs)

∆ = [δll′ ], δij =


d−ξ

ll′ t̄−ξ
l′ if l′ ∈ P

d−ξ
ll′ otherwise

(transportation network)

d−ξ
ll′ = ϵλ1

ll′ , t̄−ξ
l′ = Ξλ2

l′ Kλ3
l′

ψl′

ψl′ + ξ
(link- and port-level costs)

Ξp = δpp ∑
n

∑
n′

(
τnpτpn′τ−1

nn′

)−ξ
Xnn′ (link- and port-level traffic)

Xnn′ = απnn′
wn′ Ln′

1 − α
(bilateral trade)

D.4 GENERAL EQUILIBRIUM: NUMERICAL ALGORITHM

Given a geography G = {N ,P ,L,M,A,D,K,Ψ} and a set of model parameters {σ,α,ξ,λ1,λ2,λ3},

the following algorithm solves for the equilibrium of the economy:

1. Initialize endogenous variables:

58Formally, the economy admits ports as regions. However, I assume that ports have a 0 measure
of households and firms, such that they do not consume or produce. It results that equilibrium prices
have dimension |N |, while the transportation network has dimensions (|N ∪ P|)2.

59Up to a numeraire: w1 = 1.
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(a) {wn}n∈N (wages)

(b) {c̄n}n∈N (factory-gate cost indices)

(c) {πnn′}n,n′∈N 2 (bilateral trade shares)

(d) {Ξp}p∈P (port traffic)

2. Outer-loop – While distancewages > tol or distancetra f f ic > tol:

(a) Based on distances ϵll′ , port capacity Kp and traffic Ξp, update Λ (transportation

network)

(b) Based on Λ, update transportation costs τll′ (transportation costs)

(c) Inner-loop (factory-gate costs) – While distancecosts > tol:

i. Based on transportation costs τnn′ , region-level productivity an, factory-gate

costs indices c̄n, and wages wn, update c̄n (factory-cost indices)60

ii. Compute distancecosts = ∑n
[
(c̄n)ic − (c̄n)ic+1]2, with ic = iteration (inner-loop)

(d) Based on transportation costs τnn′ , region-level productivity an, factory-gate costs

indices c̄n, and wages wn, update πnn′ (bilateral trade shares)

(e) Based on bilateral trade shares πnn′ and wages bills wnLn, update Xnn′ (bilateral

trade)

(f) Based on the transportation network Λ and bilateral trade Xnn′ , compute Ξp (port-

level traffic)

(g) Based on bilateral trade Xnn′ , and households Ln compute wages wn (wage bills), up

to a normalization w1 = 1

(h) Compute distancewages = ∑n
[
(wn)iout − (wn)iout+1]2 and

distancetra f f ic = ∑p
[
(Ξp)iout − (Ξp)iout+1]2, with iout = iteration (outer loop)

In practice, I dampen each wage and traffic iteration using a dampening factor of 0.1, and use

the ’daarem’ R package to optimize the resolution of the fixed point.

60Note that transportation costs used in factory-gate cost indices and bilateral trade shares do not
have the same dimension as transportation costs used for traffic. This is because ports have a measure
0 of labor, and therefore would not impact bilateral trade shares and costs indices. I use only the sub-
matrix of τij with dimensions |N| × |N|.
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D.5 WELFARE

Proof. Proposition 2. Define welfare in location d as:

Vn =
Ln(wn + Πn)(∫
i∈Mn

p1−σ
i di

) 1
1−σ

=
Lnwnσ̃(∫

i∈Mn
(σ̃ci)1−σdi

) 1
1−σ

=
Lnwn(

Mn
∫

c1−σdFi(c)
) 1

1−σ

(50)

It remains to characterize
∫

c1−σdFi(c):

∫
c1−σdFi(c) =

∫ ∞

0
c1−σd

{
1 − exp

[
−
(

anwα−1
n

) ξ
α

(
∑
n′

an′ c̄−ξ
n′ ∑

r∈Rn′n

|Br |

∏
k=1

d−ξ
rk−1,rk

|Pr |

∏
m=1

t̄−ξ
p(r)m

)
c

ξ
α

]}

=
∫ ∞

0
c1−σd

{
1 − exp

[
−
(

anwα−1
n

) ξ
α

(
∑
n′

an′ c̄−ξ
n′ τ

−ξ
n′n

)
c

ξ
α

]}

=

anwα−1
n

(
∑
n′

an′ c̄−ξ
n′ τ

−ξ
n′n

) α
ξ

σ−1 ∫ ∞

0
u1−σd

{
1 − exp

[
−u

ξ
α

]}

=

anwα−1
n

(
∑
n′

an′ c̄−ξ
n′ τ

−ξ
n′n

) α
ξ

σ−1 ∫ ∞

0
v−

α(σ−1)
ξ d

{
1 − e−v

}

=

anwα−1
n

(
∑
n′

an′ c̄−ξ
n′ τ

−ξ
n′n

) α
ξ

σ−1 ∫ ∞

0
v−

α(σ−1)
ξ e−vdv

=

anwα−1
n

(
∑
n′

an′ c̄−ξ
n′ τ

−ξ
n′n

) α
ξ

σ−1

Γ
(

1 − α(σ − 1)
ξ

)
,

(51)

The third equality follows from applying the transformation anwα−1
n

(
∑n′ an′ c̄−ξ

n′ τ
−ξ
n′n

) α
ξ c = u.

The fourth equality follows from applying the transformation v = u
ξ
α . The sixth equality fol-

lows from the definition of the Gamma function Γ(z) =
∫ ∞

0 tz−1e−tdt. Therefore, assuming a

unit measure of firms in each region, welfare writes:

Vn = Lnwn

anwα−1
n

(
∑
n′

an′ c̄−ξ
n′ τ

−ξ
n′n

) α
ξ

σ−1

Γ
(

1 − α(σ − 1)
ξ

)
(52)
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D.6 WELFARE ELASTICITY

Proof. Proposition 3. Rewrite the region-level welfare function as

Vn = Lnwβw
n T βτ

n Cn, (53)

where Cn = a(σ−1)
n Γ

(
1 − α(σ−1)

ξ

)
, βw = 1 + (α − 1)(σ − 1), and βτ = α

ξ (σ − 1) are constants.

Recalling that πn′n = an′ c̄−ξ
n′ τ

−ξ
n′n/Tn, log-differentiating yields:

∂ logVn

∂ logKp
= βw

∂ logwn

∂ logKp︸ ︷︷ ︸
(1)

+βτ ∑
n′

πn′n

−ξ
∂ log c̄n′

∂ logKp︸ ︷︷ ︸
(2)

−ξ
∂ logτn′n

∂ logKp︸ ︷︷ ︸
(3)

 . (54)

(1) - Wage elasticity ∂ logwn
∂ logKp

. Recall the definition of the wage bill:

wnLn =
1 − α

α ∑
n′

Xnn′ with Xnn′ = απnn′
wn′ Ln′

1 − α
. (55)

Log-differentiating with respect to logKp yields:

wnLn
∂ logwn

∂ logKp
=

1 − α

α ∑
n′

Xnn′

[
∂ logπnn′

∂ logKp
+

∂ logwn′

∂ logKp

]
(56)

It remains to obtain the derivative of trade shares over logKp. Log-differentiating πnn′

∂ logπnn′

∂ logKp
= −ξ

[
∂ log c̄n

∂ logKp
+

∂ logτnn′

∂ logKp

]
− ∑̃

n
πñn′

[
−ξ

∂ log c̄ñ

∂ logKp
− ξ

∂ logτñn′

∂ logKp

]
(57)

Plugging into the wage derivative yields:

∂ logwn

∂ logKp
=

1 − α

αwnLn
∑
n′

Xnn′

[
−ξ

[
∂ log c̄n

∂ logKp
+

∂ logτnn′

∂ logKp

]
+ ξ ∑̃

n
πñn′

[
∂ log c̄ñ

∂ logKp
+

∂ logτñn′

∂ logKp

]
+

∂ logwn′

∂ logKp

]
(58)

(2) - Factory-gate cost elasticity
∂ log c̄−ξ

n′
∂ logKp

. Recall the definition of factory-gate costs:

c̄−ξ
n = aξ

nw(α−1)ξ
n T α

n Γ (1 − α) , where Tn = ∑̃
n

añ c̄−ξ
ñ τ

−ξ
ñn . (59)
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Log-differentiating with respect to logKp yields:

− ∂ log c̄n

∂ logKp
= (α − 1)

∂ logwn

∂ logKp
+

α

ξ

∂ logTn

∂ logKp

= (α − 1)
∂ logwn

∂ logKp
− α∑

n′
πn′n

[
∂ log c̄n′

∂ logKp
+

∂ logτn′n

∂ logKp

] (60)

(3) - Bilateral transportation costs elasticity ∂ logτn′n
∂ logKp

. Define B = (I − ∆)−1. By definition, logτll′ =

− 1
ξ logBll′ ,∀l ̸= l′ and logτll′ = 0,∀l = l′. Differentiating B with respect to logKp yields:

∂B
∂ logKp

= B
(

∂∆
∂ logKp

)
B, (61)

or, element-wise:
∂Bll′

∂ logKp
= ∑

i
∑

j
Bli

(
∂∆ij

∂ logKp

)
Bjl′ . (62)

Realizing that ∂∆ij/∂ logKp = 0,∀j /∈ P , this yields:

∂ logBll′

∂ logKp
=

1
Bll′

∑
i

∑
j∈P

Bli

(
∂δij

∂ logKp

)
Bjl′ . (63)

With the parametrization δll′ = d−ξ
ll′ t̄−ξ

l′ , and t̄−ξ
l′ = Ξλ2

l′ Kλ3
l′

ψl′
ψl′+ξ if l′ ∈ P , one obtains:

∂δij

∂ logKp
= δij

(
λ31j=p + λ2

∂ logΞj

∂ logKp

)
. (64)

Plugging this expression into ∂ logBll′/∂ logKp yields:

∂ logBll′

∂ logKp
=

(
λ3 + λ2

∂ logΞp

∂ logKp

)
1

Bll′
∑

i
BliδipBpl′ +

1
Bll′

∑
p′∈P−p

(
λ2

∂ logΞp′

∂ logKp

)
∑

i
Bliδip′Bp′ l′

=

(
λ3 + λ2

∂ logΞp

∂ logKp

)
1

Bll′
(B∆)lpBpl′ + ∑

p′∈P−p

(
λ2

∂ logΞp′

∂ logKp

)
1

Bll′
(B∆)lp′Bp′ l′ .

(65)
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For all l ̸= p′, (B∆)lp′ = Blp′ since B = (I − ∆)−1, such that (B∆)lp′ = B − I. Therefore,

∂ logτll′

∂ logKp
= −1

ξ

∂ logBll′

∂ logKp

= −λ3

ξ

BlpBpl′

Bll′
− λ2

ξ ∑
p′∈P

Blp′Bp′ l′

Bll′

∂ logΞp′

∂ logKp

= −λ3

ξ
Θp|ll′ −

λ2

ξ ∑
p′∈P

Θp′|ll′
∂ logΞp′

∂ logKp︸ ︷︷ ︸
(4)

(66)

where I use the identity Θp|ll′ =
BlpBpl′

Bll′
.

(4) - Traffic elasticity
∂ logΞp′
∂ logKp

. Traffic writes:

Ξp′ = ∑
n

∑
n′

Θp′|nn′Xnn′ , where Θp′|nn′ =
(

τnp′τp′n′τ−1
nn′

)−ξ
. (67)

Log-differentiating with respect to Kp yields:

∂ logΞp′

∂ logKp
= ∑

n
∑
n′

w(p′)
nn′

[
∂ logΘp′|nn′

∂ logKp
+

∂ log Xnn′

∂ logKp

]
. (68)

where w(p′)
nn′ = Θp′|nn′Xnn′/Ξp′ . I first derive

∂ logΘp′|nn′

∂ logKp
= −ξ

∂ logτnp′

∂ logKp
− ξ

∂ logτp′n′

∂ logKp
+ ξ

∂ logτnn′

∂ logKp

= λ3

[
Θp|np′ + Θp|p′n′ − Θp|nn′

]
+ ∑

p̃∈P
λ2

[
Θ p̃|np′ + Θ p̃|p′n′ − Θ p̃|nn′

] ∂ logΞ p̃

∂ logKp
.

(69)

The elasticity of trade volumes to port capacity is

∂ log Xnn′

∂ logKp
=

∂ logπnn′

∂ logKp
+

∂ logwn′

∂ logKp

= −ξ

[
∂ log c̄n

∂ logKp
+

∂ logτnn′

∂ logKp

]
− ∑̃

n
πñn′

[
−ξ

∂ log c̄ñ

∂ logKp
− ξ

∂ logτñn′

∂ logKp

]
+

∂ logwn′

∂ logKp

(70)

The first term writes:

−ξ

[
∂ log c̄n

∂ logKp
+

∂ logτnn′

∂ logKp

]
= −ξ

∂ log c̄n

∂ logKp
+ λ3Θp|nn′ + λ2 ∑

p̃∈P
Θ p̃|nn′

∂ logΞ p̃

∂ logKp
(71)
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The second term writes:

−∑̃
n

πñn′

[
−ξ

∂ log c̄ñ

∂ logKp
− ξ

∂ logτñn′

∂ logKp

]
= ξ ∑̃

n
πñn′

∂ log c̄ñ

∂ logKp
+ ξ ∑̃

n
πñn′

∂ logτñn′

∂ logKp

= ξ ∑̃
n

πñn′
∂ log c̄ñ

∂ logKp
− ∑̃

n
πñn′

[
λ3Θp|ñn′ + λ2 ∑

p̃∈P
Θ p̃|ñn′

∂ logΞ p̃

∂ logKp

]
(72)

Therefore, the elasticity of trade volumes to port capacity writes:

∂ log Xnn′

∂ logKp
=− ξ

∂ log c̄n

∂ logKp
+ λ3Θp|nn′ + λ2 ∑

p̃∈P
Θ p̃|nn′

∂ logΞ p̃

∂ logKp
+ ξ ∑̃

n
πñn′

∂ log c̄ñ

∂ logKp

− ∑̃
n

πñn′

[
λ3Θp|ñn′ + λ2 ∑

p̃∈P
Θ p̃|ñn′

∂ logΞ p̃

∂ logKp

]
+

∂ logwn′

∂ logKp

(73)

Using the previous expression in the elasticity of port traffic to port capacity therefore yields:

∂ logΞp′

∂ logKp
=∑

n
∑
n′

w(p′)
nn′

[
λ3

[
Θp|np′ + Θp|p′n′ − Θp|nn′

]
+ ∑

p̃∈P
λ2

[
Θ p̃|np′ + Θ p̃|p′n′ − Θ p̃|nn′

] ∂ logΞ p̃

∂ logKp

]

+ ∑
n

∑
n′

w(p′)
nn′

(
−ξ

∂ log c̄n

∂ logKp
+ λ3Θp|nn′ + λ2 ∑

p̃∈P
Θ p̃|nn′

∂ logΞ p̃

∂ logKp
+ ξ ∑̃

n
πñn′

∂ log c̄ñ

∂ logKp

− ∑̃
n

πñn′

[
λ3Θp|ñn′ + λ2 ∑

p̃∈P
Θ p̃|ñn′

∂ logΞ p̃

∂ logKp

]
+

∂ logwn′

∂ logKp

(74)

or, in concise form:

∂ logΞp′

∂ logKp
=∑

n
∑
n′

w(p′)
nn′

[
λ3∆np′n′,p + λ2 ∑

p̃∈P
∆np′n′,p̃

∂ logΞ p̃

∂ logKp
+ ξ

[
∑̃
n

πñn′
∂ log c̄ñ

∂ logKp
− ∂ log c̄n

∂ logKp

]
+

∂ logwn′

∂ logKp

]
,

(75)

where

∆np′n′,p = Θp|np′ + Θp|p′n′ − ∑̃
n

πñn′Θp|ñn′ , and w(p′)
nn′ = Θp′|nn′Xnn′/Ξp′ . (76)

Solving the system. Altogether, steps (1), (2), (3), and (4) form a system of N × N × P equations
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that reads:

wnLn
∂ logwn

∂ logKp
=

1 − α

α ∑
n′

Xnn′

[
−ξ

[
∂ log c̄n

∂ logKp
− λ3

ξ
Θp|nn′ − λ2

ξ ∑
p′∈P

Θp′|nn′
∂ logΞp′

∂ logKp

]]

+
1 − α

α ∑
n′

Xnn′

[
ξ ∑̃

n
πñn′

[
∂ log c̄ñ

∂ logKp
− λ3

ξ
Θp|ñn′ − λ2

ξ ∑
p′∈P

Θp′|ñn′
∂ logΞp′

∂ logKp

]
+

∂ logwn′

∂ logKp

]
,

(77)

∂ logΞp′

∂ logKp
=∑

n
∑
n′

w(p′)
nn′

[
λ3∆np′n′,p + λ2 ∑

p̃∈P
∆np′n′,p̃

∂ logΞ p̃

∂ logKp
+ ξ

[
∑̃
n

∂ log c̄ñ

∂ logKp
− ∂ log c̄n

∂ logKp

]
+

∂ logwn′

∂ logKp

]
,

(78)

− ∂ log c̄n

∂ logKp
= (α − 1)

∂ logwn

∂ logKp
− α∑

n′
πn′n

[
∂ log c̄n′

∂ logKp
− λ3

ξ
Θp|n′n −

λ2

ξ ∑
p′∈P

Θp′|n′n
∂ logΞp′

∂ logKp

]
, (79)

I represent the system in matrix form. Define the vector of unknown elasticities

x = [gw gΞ gc]
⊺

Starting from the factory cost block. The sub-system reads:

Acwgw + AcΞgΞ + Accgc = bc, (80)

with

Acw = (α − 1)IN , AcΞ =
αλ2

ξ
Z(1), Acc = IN − αΠ⊺,

and

bc =
αλ3

ξ
Z(1)

p ,

where I define

Z(1) = [(Π ⊙ Θ1)
⊺1N ... (Π ⊙ ΘP)

⊺1N ], Θ ∈ RN×N×P, Θp ∈ RN×N , Θp|nn′ =
BnpBpn′

Bnn′
,

and Z(1)
p = (Π ⊙ Θp)⊺1N denotes the pth column of Z(1).

The wage block sub-system reads:

Awwgw + AwΞgΞ + Awcgc = bw (81)

with

Aww = diag(w ⊙ L)− 1 − α

α
X, AwΞ = λ2

1 − α

α
Z(2), Awc = −ξ

1 − α

α
[diag(X1N)− XΠ⊺] ,
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and

bc = λ3
1 − α

α
Z(2)

p ,

where I define

Z(2)
p = (X ⊙ Θp)1N − X

[
(Π⊤ ⊙ Θp)1N

]
, Z(2) =

[
Z(2)

1 · · ·Z(2)
P

]
∈ RN×P.

The traffic block sub-system reads:

AΞwgw + AΞΞgΞ + AΞcgc = bw, (82)

with

AΞw = −Z(3), AΞΞ = IP − λ2Z(4), AΞc = ξ(Z(5) − Z(6)),

and

bΞ = λ3Z(3)
p ,

where I define

Z(3) = {Z(3)
p′n′}, Z(3)

p′n′ = ∑
n

w(p′)
nn′ ,

Z(4) = {Z(4)
p′p}, Z(4)

p′p = ∑
nn′

w(p′)
nn′ ∆np′n′,p, ∆np′n′,p = Θp|np′ + Θp|p′n′ − ∑̃

n
πñn′Θp|ñn′ ,

Z(5) = {Z(5)
p′n}, Z(5)

p′n = ∑
n′

w(p′)
nn′ πnn′ ,

and

Z(6) = {Z(6)
p′n}, Z(6)

p′n = ∑
n

w(p′)
nn′ .
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E QUANTIFICATION

E.1 ESTIMATING TRADE COSTS

In this section, I present the construction of the instruments for port traffic and port capac-

ity used in the estimation of Equation (20). I need two orthogonal demand- and supply-side

shifters to deliver consistent 2SLS estimates of the traffic and capacity elasticities embedded

in transportation costs, discussed thereafter. Table E.1 demonstrate the first-stage relevance of

the instruments for both exogenous regressors.

Endogeneity of port traffic. In the short run a port’s throughput Ξpo ,t is the equilibrium quan-

tity where a downward-sloping demand curve for vessel traffic meets an upward-sloping sup-

ply curve of handling services. Unobserved shocks that shift either curve – e.g. a sudden surge

in import demand from the port’s hinterland – enter the regression error term but also move

Ξpo ,t. As a result, Ξpo ,t is mechanically correlated with the error term, biasing the estimated

congestion elasticity. To break this simultaneity I employ a demand-side instrument that shifts

the demand curve while leaving supply unchanged: global container traffic interacted with

each port’s share of coastal population in 1950. Historical population is predetermined with re-

spect to contemporary trade shocks, and the interaction captures world-wide booms or slumps

that raise demand proportionally across ports without affecting their marginal handling cost

schedule. I construct the following instrument for port traffic:

z1
po ,t = ∑

p∈P−c(po)

ΞTEU
po ,t × SharePopcoastal,po ,1950. (83)

The set P−c(po) refers to the set of global ports, excluding ports in the same country as po. The

share of coastal population SharePopcoastal,po ,1950 is constructed using the HYDE 3.3 data, pro-

viding estimates of inhabitants in 1950 at a 5-arc-minute resolution (Klein Goldewijk, 2024).

I extract the total population in 1950 within a 20km buffer around the 621 ports used in the

trade costs estimation, and construct the share of coastal population attributed to each port.

Port traffic ΞTEU
po ,t is the same measure as in Section 5.1.

Endogeneity of port capacity. Port capacity Kpo , is a long-run choice of the port operator and

thus responds to the same latent forces that shape current trade flows. Forward-looking expan-

sions link Kpo positively to unobserved demand shocks, while congestion-induced upgrades

or measurement noise in the 99th-percentile traffic proxy can violate exogeneity. I therefore
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use a long-run supply-side instrument z2
po

that shifts the marginal-cost curve independently of

demand: the mean terrain ruggedness within 20 km of the port, constructed using the Terrain

Ruggedness Index at a 30-arc-second resolution of Amatulli et al. (2018). Rugged hinterland

topography raises the cost of transporting goods outside of the port area, leading port plan-

ners to install systematically lower capacity, yet it is fixed by geology and has no direct effect

on route-specific demand.

Table E.1: Estimation of transportation costs: first stage

Log Port Origin Traffic Log Port Origin Capacity
(1) (2)

z1
po ,t 0.59 0.47

(0.00) (0.00)
z2

po
-0.44 -0.39
(0.00) (0.00)

Log Distance 1.14 0.95
(0.02) (0.01)

Log Cyclone Risk 0.08 0.10
(0.01) (0.00)

Observations 141,086 141,117
Adjusted R2 0.69 0.69

nd-week fixed effects ✓ ✓
no-week fixed effects ✓ ✓
pd-week fixed effects ✓ ✓

Notes: This table presents the results of regressing the two endogenous regressors in Equation 20 on
exogenous intruments. The outcomes are Port Traffic, defined as weekly estimates of total TEU volumes
transiting through ports of origin of shipments, and Port Capacity, defined as the 99th percentile of daily
TEU volume at ports. Distance refers to the total route distance (land and sea). Cyclone Risk refers to
the expected windspeed at ports, as reported in the STORM data. The instruments are described in
Section E.1. Robust standard errors are clustered at the {no,nd, po, pd}-week level.

E.2 QUANTIFYING FUNDAMENTALS

In this section, I describe the procedure to recover the region-level fundamental productivity

shifters an. The procedure entails inverting the equilibrium conditions of the model to pin

down fundamental productivity as a function of equilibrium objects, and solving the resulting

fixed point system fundamental productivity an rationalize the data-driven GDP per capita

wdata
n ∈ {wdata

n }n∈N =Wdata obtained from Rossi-Hansberg and Zhang (2025). From the wage

bill, bilateral trade shares and bilateral trade equilibrium conditions, I obtain the following
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inversion of bilateral trade shares to recover fundamental productivity:

an = wnLn

[
∑
n′

c̄−ξ
n τ

−ξ
nn′

∑ñ añ c̄−ξ
ñ τ

−ξ
ñn′

wn′ Ln′

]−1

. (84)

Given a modified geography G = {N ,P ,L,M,D,K,Ψ,Wdata} and a set of model param-

eters {σ,α,ξ,λ1,λ2,λ3}, the following algorithm recovers fundamental productivity shifters of

the economy:

1. Initialize endogenous variables:

(a) {an}n∈N (productivity)

(b) {c̄n}n∈N (factory-gate cost indices)

(c) {Ξp}p∈P (port traffic)

2. Outer-loop – While distanceproductivity > tol or distancetra f f ic > tol:

(a) Based on distances ϵll′ , port capacity Kp and traffic Ξp, update Λ (transportation

network)

(b) Based on Λ, update transportation costs τll′ (transportation costs)

(c) Inner-loop (factory-gate costs) – While distancecosts > tol:

i. Based on transportation costs τnn′ , region-level productivity an, factory-gate

costs indices c̄n, and wages wdata
n , update c̄n (factory-cost indices)

ii. Compute distancecosts = ∑n
[
(c̄n)ic − (c̄n)ic+1]2, with ic = iteration (inner-loop)

(d) Based on transportation costs τnn′ , region-level productivity an, factory-gate costs

indices c̄n, and wages wdata
n , update πnn′ (bilateral trade shares)

(e) Based on bilateral trade shares πnn′ and wages bills wdata
n Ln, update Xnn′ (bilateral

trade)

(f) Based on the transportation network Λ and bilateral trade Xnn′ , compute Ξp (port-

level traffic)

(g) Based on factory-gate costs indices c̄n, fundamental productivity an, transportation

costs τnn′ , and wages wages bills wdata
n Ln, compute an (productivity inversion), up to

a normalization a1 = 1

(h) Compute distanceproductivity = ∑n
[
(an)iout − (an)iout+1]2 and

distancetra f f ic = ∑p
[
(Ξp)iout − (Ξp)iout+1]2, with iout = iteration (outer loop)
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In practice, I dampen each productivity and traffic iteration using a dampening factor of 0.1,

and use the ’daarem’ R package to optimize the resolution of the fixed point.

E.3 GEOGRAPHY AND MODEL FIT

Figure E.1: Port selection for counterfactual

Notes: This figure plots the cumulative share of total TEU volume and vessel count by ports in the Port-
Watch data (2019-2023). Grey dots are ports which are excluded from the sample in the counterfactual
exercises.
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Figure E.2: Port congestion and model fit

Notes: This figure compares model-based port traffic to its (untargeted) counterpart in the data. I
compare log-normalized port traffic in the data – measured as average yearly total TEU volume (x-axis)
– to the log-normalized model-based estimates of port traffic (y-axis). I compare two calibrations: (i)
with the estimated congestion elasticity (baseline), or (ii) with no congestion (λ2 = 0). Model-based
moments are computed using the model inversion described in Appendix E.2.

Figure E.3: Model fit – aggregate bilateral trade shares (untargeted)

Notes: This figure compares log country-level trade shares in the data – obtained from GLORIA input–
output tables – (x-axis) to their model-based counterparts (y-axis). Model-based moments are computed
using the model inversion described in Appendix E.2.
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E.4 ADDITIONAL QUANTITATIVE RESULTS

(a) Welfare change (bp) (b) Traffic change (%)

Figure E.4: RCP8.5 with rerouting vs. without rerouting

Notes: These Panels plot the density of the change in welfare (Panel a) and port traffic (Panel b), in both
RCP8.5 counterfactuals with and without rerouting.

86



E.5 INFRASTRUCTURE POLICY

E.5.1 INVESTMENT AND PORT CAPACITY

Data. I combine World Bank PPI project data on port investments with IMF PortWatch out-

comes at the port-year level. I use all Ports projects from the World Bank’s Private Participa-

tion in Infrastructure (PPI) database for 2019–2023 (World Bank, 2025). The data contain the

port identifier, the investment year, and total committed investment for all port infrastructure

projects in which the World Bank participated. For ports with multiple projects in the same

year, I sum investment amounts to obtain a port×year aggregate. I manually assign PortWatch

IDs to recipient ports by port name.

I merge the investment data with PortWatch global traffic data, aggregated at the yearly

level (2019–2024). The outcome of interest is yearly port capacity, defined as the 99th percentile

of daily TEU over the calendar year. The main sample consists of all ports located in the same

countries as the recipient ports of investments. The robustness sample consists of all ports in

the PortWatch data. I also compute quartiles of annual total TEU traffic, qp,t ∈ {1, . . . ,4}, used

to flexibly control for heterogeneous time shocks.

Empirical strategy. I estimate a staggered difference-in-differences model with continuous

treatment (amount of investment, in billion USD) to investigate how port capacity evolves

around the investment year, allowing the dynamic effect to scale with the investment amount.

Let τp,t ≡ t− ttreat
p denote event time (years relative to the investment year, with untreated ports

assigned τp,t = 0 and Ip = 0). I estimate the following model:

Kp,t = ∑
k∈K

k ̸=−1

βk 1
{

τp,t = k
}

Ip + αp + γt×qp,t + εp,t, (85)

where Kp,t is the 99th percentile of daily TEU traffic (capacity proxy) for port p in year t; 1{τp,t =

k} are event-time dummies; Ip is the port’s total investment amount (billions USD); αp are port

fixed effects; and γt×qp,t are year-by-TEU-quartile fixed effects that absorb flexible global shocks

with heterogeneous impacts across the traffic distribution. βk measures the change in capacity

at event time k per billion USD invested, relative to the pre-investment year. Standard errors

are clustered at the country (ISO3) level.

Figure E.5a plots the results, suggesting that USD 1 billion of investment increases port

capacity by 3,649 TEU-days for LMIC ports. This corresponds to a 27% increase in uncondi-

tional port capacity. I use this estimate to translate investment into port capacity increases in
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the policy experiment of Section 7.3. Figure E.5b confirms that the result is robust to allowing

comparisons with all global ports (within yearly traffic quartiles).

(a) Port capacity - LMIC ports (b) Port capacity - all ports

Figure E.5: The impact of port investment on port capacity

Notes: These Panels plot the effect of port investment on port capacity, as specified by Equation (85).
The outcome of both Panels is the 99th percentile daily TEU traffic for port p in year t. The sample in
Panel (a) consists of all ports in countries in which at least one port received a PPI investment. The
sample of Panel (b) consists of all ports in the PortWatch data. The bars show 95% confidence intervals.
Black dots indicate point estimates significant at the 5% level, gray squares at the 10% level, and empty
dots denote non-significant estimates at the 10% level.
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E.5.2 ADDITIONAL RESULTS: INFRASTRUCTURE POLICY

(a) Welfare elasticity (b) ∆ Welfare elasticity (%)

Figure E.6: EU27 welfare elasticity to port traffic

Notes: These Panels plot the social savings sufficient statistics of port capacity for EU27 welfare under
a RCP8.5 scenario. In Panel (a), I plot the port-level elasticity of EU27 welfare to port capacity. In Panel
(b), I plot the change in port-level EU27 welfare elasticities from the baseline scenario to the RCP8.5 one.
EU27 welfare elasticities are computed from the counterfactual outputs of Section 6, using the solution
method described in Appendix D.6. The color scales of both Panels are truncated at the 5th and 95th

percentiles.
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