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ABSTRACT

Transportation infrastructure is vulnerable to extreme weather events. Vulnerability
is prominent at maritime ports, where tropical cyclones frequently halt operations
and force firms to adapt to transportation disruptions. I quantify these responses by
linking high-frequency maritime shipment data to tropical cyclone tracks. Exposure
to tropical cyclones temporarily disrupts port activities (=1-2 weeks), prompting
firms to adjust route choices along transportation networks (rerouting), even after
ports resume operations (~2-6 months). To evaluate the general equilibrium im-
plications of these weather disruptions, I develop a quantitative model of spatial
production networks with endogenous routing. Structural estimation reveals that
maritime transportation costs decrease with port capacity (scale), but increase with
port traffic (congestion) and cyclone risk. Investigating future climate hazards to
the transportation network, I find that rerouting is a key adaptation mechanism that
prevents global welfare losses. To translate evidence into policy, I derive model-
based sufficient statistics for evaluating and targeting future port investments in
light of climate change. Allocation rules that ignore weather risk and firms” adap-

tive responses systematically misallocate investment.
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1 INTRODUCTION

Transportation infrastructure is the backbone of international trade and attracts large
investments to improve efficiency and resilience. Yet, infrastructure is particularly
vulnerable to extreme weather. Maritime ports — channeling more than 80% of global
trade volumes — exemplify this risk through their exposure to storm surge, high winds,
and flooding. Weather hazards threaten not only the physical infrastructure of ports
but also the trade flows that depend on them.! Escalating climate risk raises concerns
about the resilience of transportation networks, and the trade they carry.

Weather-related disruptions expose firms to shipping bottlenecks, delays, and un-
certainty (Blaum et al., 2024). Firms can reduce exposure to disrupted ports by di-
verting away from risky infrastructure or from suppliers that rely on it. However,
these private responses can also amplify disruptions by inducing congestion spillovers
along alternative routes (Allen and Arkolakis, 2022; Brancaccio et al., 2024). Account-
ing for such endogenous rerouting is crucial for evaluating returns to port investment,
given that transportation costs have general equilibrium effects on the spatial distri-
bution of economic activity (Allen et al., 2025; Redding and Turner, 2015).

In this paper, I study firms’ adaptation margins to transport-related climate risks
and their impacts on the economy. First, using shipment-level maritime trade data
linked to port operations and tropical cyclone exposure, I show that weather shocks
disrupt port activity and prompt firm-level rerouting that preserves supply relation-
ships. Second, to quantify the general-equilibrium impacts of future climate risks
to port infrastructure, I develop a novel model of spatial production networks that
captures complex routing decisions and the congestion spillovers they induce across
transportation networks. Third, to evaluate public investment in ports, I develop
a normative, sufficient-statistics framework that links port improvements to welfare
while accounting for firms’ responses and weather risk.

I measure firms’ responses to transportation shocks by combining Brazilian admin-
istrative maritime trade data (bills of lading) with detailed micro-spatial information

on tropical cyclones and daily global port operations. The data cover the universe of

1Studying 1,340 ports globally, Verschuur et al. (2023b) find that 86% of ports are exposed to more
than three weather-related hazards. About one-third of this risk is attributable to tropical cyclones,
exposing USD 63 billion in trade annually.



Brazilian imports from 2014 to 2023 at the shipment level. Bills of lading contain in-
formation on shipment characteristics, on each trading firm, and on the ports used to
ship the goods. Tropical cyclones provide plausibly exogenous weather shocks to in-
fer firm-level adaptation margins.? 1 investigate the effect of these weather shocks on
port activity and the responses of Brazilian firms to foreign transportation disruptions
—i.e., shocks to the shipment’s port of origin.’

I exploit a stacked difference-in-differences design (Cengiz et al., 2019; Deshpande
and Li, 2019) to provide novel empirical evidence that port exposure to tropical cy-
clones prompts rerouting decisions — a mechanism that dampens firm-to-firm trade
disruptions. Using quasi-random variation in cyclone exposure across ports, I first
show that tropical cyclones temporarily disrupt the operations of maritime ports, on
average for 12 days around the cyclone’s landfall.* Second, I use shipment-level data
to examine private adaptation through rerouting. Leveraging variation in port expo-
sure to cyclones across the set of ports used by a pair of firms, I find that these disrup-
tions induce a two-month rerouting away from exposed ports, relative to unexposed
ports. This response is magnified (up to six months of rerouting) when the treatment
is the first experienced by the relationship, suggesting a learning behavior along the
treatment history. Third, aggregating shipment data at the firm-to-firm level, I show
that the cyclone events are not disruptive enough to sever buyer-supplier links: I ob-
serve only a short-lived decline in relationship activity. Overall, the evidence indicates
that the principal adaptation margin is routing rather than sourcing.

To investigate the welfare impacts of these adaptation margins in the context of
climate change, I develop a static model of spatial production networks with endoge-
nous trade costs affected by weather disruptions. Informed by the empirical evidence,
the model accounts for private decisions: firms reroute trade toward safer routes in
response to weather risk. However, such routing responses can affect other parts of

the transportation network if congestion spillovers raise the costs of using alterna-

2Although tropical cyclones are concentrated within well-defined storm seasons and broad geo-
graphic areas, the exact location, timing, and intensity of the events remain unpredictable (Hsiang and
Jina, 2014).

3In the sample I consider, no Brazilian port is exposed to tropical cyclones. Brazil’s coastal regions
lie near the equator, where sea surface temperatures are relatively stable and the Coriolis force is weak
— tropical cyclones rarely form or intensify in this region.

“Since port authorities forecast cyclones’ trajectories and intensities, port downtime can precede
landfall. I use precautionary thresholds from Coast Guard authorities to inform my definition of a
port-level shock. See Section 3.1.



tive routes. In the model, firms located across regions require intermediate inputs
to produce final goods. They make joint sourcing and routing decisions based on
factory-gate and transportation costs to find the most cost-effective supplier and de-
livery route. Road transportation is allowed when regions are directly connected by
land, and maritime transportation is allowed when both regions have port infrastruc-
ture. Shipping through ports entails additional transportation costs related to port
traffic and weather risks, which are alleviated by port capacity.

To quantify how congestion, port capacity, and local weather shape firms’ sourc-
ing-routing decisions, I parametrize transportation costs and structurally estimate
their components using Brazilian microdata linked to information on port operations
and cyclone risk. I address endogeneity in port traffic and capacity using a novel set
of geography-based instruments. For port traffic, I use global container throughput
interacted with each port’s 1950 coastal-population share — a predetermined demand
shifter that scales common traffic shocks across ports while leaving local handling
costs unchanged. For port capacity, I use mean terrain ruggedness around ports —
a geologic supply determinant that raises inland evacuation costs and limits optimal
capacity, yet remains exogenous to current trade flows. Estimation confirms three
predictions of the model: (i) port-level traffic leads to congestion and increases trans-
portation costs; (ii) this congestion is alleviated by port capacity; and (iii) transporta-
tion costs are affected by wind conditions around ports. A 1% increase in cyclone risk
at the port level raises transportation costs by 0.01%.

I calibrate the model at the subnational level for the global economy and use prob-
abilistic projections of tropical cyclones to infer future weather risk at ports under an
unmitigated climate change scenario.” The model quantifies the distributional impacts
of these climate-related risks on maritime traffic and regional welfare. Aggregate wel-
fare is virtually unaffected (+0.005 basis points) but masks stark spatial heterogeneity:
the 5% and 95 percentiles of welfare changes are —0.47 and +0.12 basis points, re-
spectively. Aggregate port traffic, however, declines by 0.26%, reflecting the combined
effects of increased weather risks and congestion spillovers. I further show that rerout-

ing is a key adaptation mechanism that prevents larger declines in global maritime

*I rely on model-based quantification and counterfactual exercises to address the impacts of climate
change. While the reduced-form evidence I propose captures firms’ responses to individual weather
events, the maritime shipments data cover only ten years and therefore do not allow observing a distri-
butional shift in weather risk — a key feature of climate change.

4



traffic and averts global welfare losses. When routing is held fixed at baseline, aggre-
gate welfare declines by 0.04 basis points, while maritime traffic declines by 4.4%.

I finally explore infrastructure policy and how future climate risks can affect in-
frastructure investment patterns. To address the high dimensionality of an optimal
infrastructure improvement problem, I propose a computationally tractable sufficient-
statistics approach to recover first-order welfare gains from port capacity improve-
ments. I express marginal welfare gains from port capacity as a function of general-
equilibrium objects, accounting for adjustments in both production and transportation
networks, and port-level weather risk. These sufficient statistics allow me to evaluate
the desirability of capacity improvements at specific ports and to quantify how ignor-
ing future climate-related risks may lead to misallocation of infrastructure investment.
In the case of global port investments, when the allocation rule is proportional to port-
level global welfare gains — a first-order allocation rule — I estimate that not accounting
for future climate at ports can lead to a 2.3% misallocation of port-capacity invest-
ment.°

To further demonstrate the use of the sufficient-statistics approach for port invest-
ment allocation, I use evidence that EU27 ports plan roughly USD 93 billion in invest-
ments by 2034 (ESPO, 2024). I construct a counterfactual that allocates this aggregate
budget across 110 EU ports in proportion to each port’s EU27 first-order welfare gains.
Incorporating future climate shifts these gains, and thus the first-order investment al-
location rule. To translate spending into capacity, I map investment dollars into port
capacity using an elasticity estimated from World Bank PPI projects. Comparing an
allocation guided by the current climate with one guided by an RCP8.5 climate yields
a 0.5% misallocation of the USD 93 billion. This results in aggregate EU welfare losses

of —0.04 basis points and leaves nearly all EU ports with lower traffic.

Related Literature. This paper connects three strands of research. First, it relates to
the growing literature on how natural disasters and extreme weather affect produc-
tion networks (Barrot and Sauvagnat, 2016; Boehm et al., 2019; Carvalho et al., 2021;
Pankratz and Schiller, 2021; Rabano and Rosas, 2024). Both the empirical and theo-
retical exercises I undertake are most closely related to recent work studying firms’

responses to climate risks: Balboni et al. (2024) and Castro-Vincenzi et al. (2024) doc-

®Misallocation refers to the share of aggregate investment which should be reallocated from low-
welfare-improving to high-welfare-improving ports.
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ument flood impacts on domestic supply chains and firms” adaptive responses, while
Martinez (2024), Blaum et al. (2024), and Clark et al. (2024) explicitly address weather
disruptions to transportation and their effects on firms’ sourcing choices.” Building
on the insight that firms incorporate climate risks when making sourcing decisions, I
reinterpret private adaptation through the lens of transportation-linked disruptions. I
foreground an additional margin — rerouting — and show how these private decisions
generate congestion spillovers that justify a role for infrastructure policy.

Second, the paper contributes to the literature on transportation costs and infras-
tructure as determinants of economic activity. A subset of this literature studies the
welfare consequences of traffic congestion (Brancaccio et al., 2020; Fajgelbaum and
Schaal, 2020; Allen and Arkolakis, 2022). I draw on the framework of Allen and Arko-
lakis (2022) and incorporate an optimal transportation problem — where firms select bi-
lateral least—cost routes — into a model of spatial production networks. Closely related,
Ganapati et al. (2024) introduce increasing returns in maritime traffic, and Wong and
Fuchs (2022) study multimodal networks. I extend this class of models by introducing
infrastructure-level operating costs and capacity constraints that endogenously shape
congestion (Ducruet et al., 2024; Brancaccio et al., 2024). This modeling choice delivers
precise traffic predictions at the node level (ports), rather than at the link level (shipping
lanes). This distinction is particularly relevant for maritime trade, where bottlenecks
arise primarily at terminals (and a few chokepoints), while open—sea lanes rarely bind.
In addition, the sufficient—statistics approach I develop brings climate risk into the
welfare analysis of infrastructure policy (Allen et al., 2025). This approach preserves
the discipline of the routing structure, delivers transparent comparative statics for fu-
ture climates, and scales to large transportation networks where full planner solutions
are computationally prohibitive.

Finally, this study relates to the broader literature on the spatial consequences of cli-
mate change (Bilal and Rossi-Hansberg, 2023; Desmet and Rossi-Hansberg, 2015; Cruz
and Rossi-Hansberg, 2024; Rudik et al., 2021). Rather than viewing trade frictions as
merely constraining climate—induced geographic reallocation, I highlight that climate

damage can propagate across space through transportation networks, generating in-

"Balboni et al. (2024) also consider flood-induced road disruptions and subsequent firms’ responses
using GPS tracker data from commercial trucks. Their quantitative framework, however, does not
model disaster-driven changes in transportation costs nor the spillovers those shocks generate across
the broader transport network.



direct losses in otherwise less—exposed regions via rerouting and congestion. This has
implications for infrastructure policy because local shocks can trigger network-wide
externalities at critical nodes. Related work studies the spatial allocation of infrastruc-
ture under climate risk, including the costs of maintaining coastal cities (Desmet et al.,
2021; Balboni, 2025). I propose a complementary perspective: assessments of where
to expand infrastructure must internalize firms’ routing responses. Rerouting can re-
shape the spatial propagation of local shocks by diverting trade flows, and infrastruc-
ture investments should be designed to support these adjustments while managing

congestion externalities.

The rest of the paper proceeds as follows. Section 2 describes the data. Section 3
provides empirical evidence on firms’ responses to weather-related transportation dis-
ruptions. Section 4 incorporates these responses into a theoretical model of production-
network formation with traffic congestion and weather-dependent transportation costs.
Section 5 details the model’s parameterization and calibration. Section 6 presents
quantitative results under climate-change scenarios. Section 7 studies infrastructure

policy. Section 8 concludes.

2 DATA

In this section, I describe the main data sources used in the paper. In the empirical
analysis, I study Brazilian firms’ responses to global transportation shocks. I there-
fore combine Brazilian maritime trade data with global port-level information, histori-
cal tropical cyclone tracks, and tropical cyclone climate data. Appendix B provides a
comprehensive review of data sources and processing — including additional data for

model quantification at the global level.

Firm-to-firm shipments. I study firm-to-firm relationships and trading routes using
bill of lading data assembled by S&P Panjiva.® The dataset encompasses the universe
of maritime import transactions conducted by Brazilian firms between June 2014 and
December 2023. Each shipment entry includes the company names of both the Brazil-
ian importer and the foreign exporter. Geographic details — such as street address,

city, postal code, and country — are recorded for each trading party, allowing precise

8 A bill of lading is a document issued by a carrier to acknowledge receipt or shipment of cargo. It
typically contains information on the cargo’s origin, destination, quantity, packaging, shipping details,
and description.



geocoding of shipment origins and destinations. The data also record the maritime
ports of loading (origin) and unloading (destination) for each shipment, enabling the
reconstruction of trading routes. For each transaction, an indicator specifies whether
the goods were containerized. The dataset includes the weight, volume, and current
US dollar value of each shipment. It also reports whether the trading parties owned
the cargo or acted as forwarders —i.e., third parties transporting the goods.

I perform a series of steps to clean the data and remove incomplete shipment in-
formation. I refer to geolocated establishments belonging to an identified parent com-
pany as firms.” First, I remove all shipments with missing parent company names or
port IDs, since I cannot identify the trading parties or routes. Second, I drop from the
sample all firms that are not geolocated at the city or postal code level. Third, I restrict
attention to shipments where both parties are declared the real owners of the cargo,
thereby excluding warehouses and transportation companies.'’ Fourth, I remove all
importers not geolocated in Brazil and all exporters geolocated in Brazil.

Throughout the empirical section, I denote Brazilian importers as buyers (indexed
by b), foreign exporters as suppliers (indexed by s), and buyer—supplier pairs {b,s}
as relationships. Based on the geographic coordinates of establishments, I assign to
each supplier and buyer their location at the subnational level (or region in Section 4),
denoted 1, for the origin location and n, for the destination location, respectively.'!
When shipments transit from a port of origin p, to a port of destination p,;, I denote
the quadruplet {n,,n4,p,,ps} as a route (indexed by r). The set of routes used by
relationship (b,s) is denoted R;s. The baseline sample contains 1,039,012 shipments
from 23,291 suppliers to 17,692 buyers, across 1,822 routes. Appendix B.1 describes the
sampling procedure and provides summary statistics on firm-to-firm trade. Figure 1a

presents the geographic distribution of firms in the sample.

Global port-level traffic. To measure global port-level traffic, I use daily indicators

of port activity provided by IMF PortWatch. The data include daily counts of port

To address frequent typos in company names and geographic details, I clean the name strings and
assign a single firm ID to all establishments sharing the same parent company name and geolocated
within a 10 km radius.

9 Although third parties are likely to influence traffic at ports through routing decisions, they are
not relevant for studying firm-to-firm relationships, as the data do not link these shipments to the
production-oriented firms trading the goods.

T map firms to the Global Administrative Unit Layers (GAUL), a set of administrative units with
global coverage created by the Food and Agriculture Organization (FAO). I use GAUL1 administrative
units — the first administrative layer within a country’s structure (e.g., states in the US).
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(a) Location of trading firms (b) Maritime routes

Notes: Panel 1a maps the locations of firms in the baseline sample. Each dot represents a firm: red
dots denote foreign suppliers (n = 23,291), and blue dots denote Brazilian buyers (n = 17,692). Panel
1b maps the locations of ports and the corresponding active maritime routes in the sample. Each dot
represents a port: red dots indicate foreign ports of origin (n = 442), and blue dots indicate Brazilian
ports of destination (n = 42). Lines represent active routes (n = 1,822). I plot the shortest sea routes —
computed using the Eurostat SeaRoute program — as a proxy for maritime routes, and exclude inland
waterway routes.

Figure 1: Firms, Ports, and Routes

calls and estimates of import and export volumes, disaggregated by ship type (e.g.,
container, dry bulk), for 1,666 global ports from 2019 to 2023.12 T match 621 ports by
name to those in the Brazilian bill of lading data and use the daily port-level aggregates
of imported and exported volumes — expressed in twenty-foot equivalent units (TEU) —

as a proxy for port traffic.'?

Tropical cyclone tracks. I obtain information on tropical cyclones from the IBTrACS
(International Best Track Archive for Climate Stewardship) database (Knapp et al.,
2010). This database provides a comprehensive record of tropical storms and cyclones
since 1841. It contains detailed characteristics of storm systems’ positions and inten-
sities, with a temporal resolution of 3 hours and a spatial resolution of 0.1°. I focus
on all cyclones that occurred from 2014 to 2023 within a 200 km buffer zone around
global coastlines. Figure 2a maps the tropical cyclone events in the sample, along with
the sustained wind speeds (in meters per second) experienced along their paths. Ap-
pendix B.3 describes the data in detail and provides summary statistics on cyclone

wind profiles at ports.

12The port-level data (2019-2023) do not cover the entire timeframe of the Brazilian bill of lading data
(2014-2023). I therefore use them (i) to verify that tropical cyclones affect port operations (Section 3.2)
and (ii) to calibrate transportation costs based on 2019-2023 data (Section 5.1).

I3TEU (twenty-foot equivalent unit) is a standard measure of container capacity. Data are down-
loaded from IMF PortWatch. The data are based on raw AIS data from the United Nations Global
Platform. Port-level daily estimates are calculated by the PortWatch team, following the methodology
described in Arslanalp et al. (2021).


https://portwatch.imf.org/pages/data-and-methodology
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(a) Tropical Cyclones Tracks (2014-2023) (b) A Tropical Cyclone Wind Speed (RCP8.5)

Notes: Panel 2a shows the paths of all tropical cyclones recorded from 2014 to 2023 within a 200 km
buffer zone around global coastlines. Wind speeds (m/s) correspond to the storm center (eye) and are
reported at a 3-hour temporal resolution (IBTrACS). Panel 2b shows the change in expected wind speed
induced by tropical cyclones, comparing the present-day scenario (1980-2015) with the RCP8.5 future
scenario (2015-2050). Estimates are based on 10,000 years of synthetic storm tracks from the STORM
model, with wind speeds weighted by the inverse of their return periods.

Figure 2: Tropical Cyclones: Historical Tracks and Future RCP8.5 Projections

Tropical cyclone climate. I obtain port-level current and future tropical cyclone cli-
mate data from the STORM model (Bloemendaal et al., 2020a,b). The data report max-
imum wind speeds (meters per second) for a fixed set of return periods, derived from
10,000 years of synthetic tropical cyclone tracks under a present-day climate scenario
(1980-2015) and a future climate scenario (2015-2050, RCP8.5/SSP5), at a spatial res-
olution of 10 km. I calculate the expected wind speed in each 2° grid cell as the sum
of maximum sustained wind speeds weighted by the inverse of their return periods
(i.e., their probabilities of occurrence over 10,000 years). Appendix B.4 describes the
data in detail. Figure 2b maps the global change in expected wind speed from tropical

cyclones. Figures B.2a and B.2b report the raw data.

3 EMPIRICAL EVIDENCE

In this section, I investigate the disruptions caused by port exposure to tropical cy-
clones at the port and firm-to-firm levels. I first show that tropical cyclones induce
a short but severe disruption to port operations. I then document that firms reroute
shipments to avoid ports” operational shutdowns. Such rerouting mechanisms pre-

vent larger disruptions at the firm-to-firm level.
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3.1 EMPIRICAL STRATEGY

Measuring port exposure to cyclones. Tropical cyclones may affect the operations of
maritime ports in several ways (Verschuur et al., 2023a). Port infrastructure is at risk
of damage from heavy rain, floods, and intense winds. To prevent the risk of infras-
tructure damage upon the arrival of a tropical cyclone, ports can suspend operations
— i.e., restrict vessels from entering the port, partially or completely — as a means to
ensure the safety of port infrastructure and prevent vessel damage.'* While the safety
guidelines vary across ports and countries, most Coast Guard authorities restrict port
operations around the threshold of 34-35 knots of expected wind speed (sustained
gale), or approximately 18 meters per second.!”> Flynn (2023) refers to this zone of
precaution as the 34-knot ship avoidance area.

Exhaustive information on the closure of ports exposed to tropical cyclones is not
easily accessible, nor is data on the actual wind speeds experienced around ports dur-
ing cyclone events. I therefore proxy disruptive tropical cyclone events by modeling
the wind speed experienced around port locations.'® The input to this cyclone profile
simulation method is the IBTrACS data described in Section 2. The output is a vec-
tor of cyclone characteristics at the port level, including the maximum sustained wind
speed experienced at each port during the event. Figure B.1 provides an example of
the cyclone profile modeling procedure across the US for Hurricane Harvey (August
2017).

For my baseline definition of a port-level shock, I use a threshold of 18 m/s for ex-
perienced maximum wind speed. Importantly, I use the time of the first-ever recorded
information on the cyclone as the timing of the shock. This corresponds to the moment
when the weather agency first detected the cyclone anomaly, thereby helping to avoid

any anticipation by economic agents in a difference-in-differences setting. Table B.6

4The US Coast Guard, for instance, can issue a set of port conditions — i.e., measures restricting port
operations — to guide ship operators in responding to tropical weather conditions. Importantly, these
measures are issued upon the projected arrival of sustained gale-force winds (greater than 34 knots),
leading ports to preemptively prepare for the arrival of a cyclone. When the cyclone is projected to
reach the port within 12 hours, the port condition ZULU is issued, closing the port to all vessel traffic.
Appendix A provides an example of a Maritime Bulletin Safety Information, issued upon the arrival of
Hurricane Milton at the port of Key West (October 2024, Florida).

15The knot is a unit of speed corresponding to one nautical mile per hour. Sustained gale-force winds
approximately correspond to wind speeds greater than 63 kilometers per hour, or 39 miles per hour.

16T use the parametric model of Willoughby et al. (2006), adjusted for asymmetry following Chen
(1994)
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reports summary statistics on tropical cyclones.

Identification. I leverage the quasi-random timing and location of tropical cyclones
to examine how (i) port operations, (ii) firm-level route choices, and (iii) firm-to-firm
trade are affected by weather shocks. The empirical setting I consider poses several
challenges to estimation. First, the treatment is staggered, and the treatment effect is
likely heterogeneous across groups and over time. Tropical cyclones may affect ports
that differ in their preparedness and recovery capacity. Moreover, treated relation-
ships may differ in unobservable factors that influence their duration and resilience
to shocks, such as relationship age or input specificity. Recent work has shown that
two-way fixed-effects difference-in-difference estimators are biased in such settings
(Borusyak et al., 2024). Second, the treatment is non-absorbing: ports — and there-
fore relationships — can be treated multiple times while recovering in between. Third,
the treatment is likely continuous, depending on the magnitude of the cyclone or the
degree of exposure to weather-related disruptions.!” Fourth, to isolate the effects of
cyclones on ports from those on firms, I need to control for a rich set of fixed effects.

I seek to address these concerns by using stacked dynamic difference-in-difference
specifications, following Cengiz et al. (2019) and Deshpande and Li (2019). Concep-
tually, I define each time period during which at least one tropical cyclone occurs as
a cyclone event, indexed by 7. For each event, I define a uniform event window, over
which I observe the dynamics of port- and firm-level outcomes in the lead-up to and
aftermath of the cyclone shock.!® I extend this framework to allow for non-absorbing
treatments. That is, I only include units that either (i) are treated once within the event
window (clean treated) or (ii) are not treated at all during the window (clean con-
trols). Units may be treated multiple times (i.e., they may appear in several event
windows), as long as subsequent treatments fall outside the relevant window.!® This
approach allows me to control for a rich set of pre-shock unit characteristics and there-
fore strengthens the credibility of the common-trends assumption, while avoiding

non-admissible comparisons inherent to staggered designs.?’

7Ports may rely on a set of critical infrastructure to operate, such as nearby power grids or entrepdts,
with differing levels of exposure to weather disasters (Verschuur et al., 2023a). Firms also exhibit vary-
ing degrees of reliance on high-risk routes for the delivery of goods.

8To preserve compositional balance between treated and control groups, I restrict attention to cy-
clone events for which outcomes are fully observed within the event window.

9This implies an assumption of treatment-effect stabilization, as in Dube et al. (2023).

2Wing et al. (2024) caution that stacked fixed-effects settings may introduce bias when averaging
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3.2 PORT-LEVEL DISRUPTIONS

I first document that tropical cyclones temporarily affect the operations of ports. I con-
struct daily measures of port activity from the IMF PortWatch data. The first outcome
of interest — the extensive margin of port operations —is a binary variable that takes the
value 1 if at least one vessel entered the port on day ¢, i.e., the port is active. The second
outcome of interest — the intensive margin of port operations — is the log number of
vessels that enter port p on day ¢, conditional on the port being active.

To construct the sample, I first restrict attention to ports that I can identify in the
Brazilian bill of lading data and that therefore export at least once to Brazil. I then
consider an event window of 15 days before and after each cyclone event 7, where T
refers to the day on which the first observation of a cyclone track is recorded at sea.
Within each event window, I subsample all ports that are either (i) exposed only once
to sustained winds of at least 18 m/s, or (ii) not exposed to sustained winds from
tropical cyclones. The final sample consists of 594 ports, potentially exposed to 120
cyclone events from 2019 to 2023.2! T consider the following specification to estimate
the effect of cyclones on port operations:

15

Yptr = Z ﬁhEp,T + Xp,t + o+ Ept,T s (1)
h=-15

where y; corresponds to the outcome of interest for port p on day t around cyclone
event 7. In the baseline specification, the treatment variable Ey, ; is binary, taking the
value 1 if port p was exposed to sustained winds of at least 18 m/s at event 7. The
regression controls for port-event and time-event fixed effects. Standard errors are
clustered at the port level.

Figure 3a shows the results of estimating Equation (1) on the extensive margin of
port operations, for a 15-day window before and after the shocks. The effect of port
exposure to cyclones is a 1- to 2-week decrease in the probability that the port is active,
followed by a full recovery. The effect corresponds to an average 9% decrease in the

probability of port activity across the post-event window (15 days).?? Figure 3b shows

ATT estimates across events if the share of treated units varies. However, the authors do not yet offer
an extension of their framework for non-absorbing treatments.

21148 ports are treated at least once in the sample.

22The unconditional probability of port activity in the pre-event window is 0.78. The duration of the

13



RTINS
A Lyt

. ‘| m |
*u,w”” e

Coefficient
Coefficient

-0.15

-0.2

15 10 5 0 5 10 15 -15 10 5 0 5 10 15
Time to treatment (days) Time to treatment (days)
(a) Port activity (b) Log vessel count

Figure 3: The impact of exposure to cyclones on port operations

Notes: These panels plot the effect of exposure to tropical cyclones on daily port-level outcomes, as
specified by Equation (1). The outcome in Panel 3a is a binary variable taking the value 1 if at least
one vessel entered the port on day ¢ (port activity), and 0 otherwise. The outcome in Panel 3b is the
log number of vessels that use the port on day ¢, conditional on the port being active. Standard errors
are clustered at the port level. The bars correspond to 95% confidence intervals. Black dots are point
estimates significant at the 5% level, gray squares at the 10% level, and empty dots are non-significant
at the 10% level.

that, even when ports remain active, the number of vessels admitted to the port area
may decrease, as ports reduce the intensity of operations. Immediately after the shock,
port operations recapture — that is, port productivity increases briefly to reduce further

shipment delays.

Heterogeneity and sensitivity. I first explore the sensitivity of the results to alterna-
tive treatment definitions. In Appendix C.1, I verify that exposure to weaker wind
speeds (below the 18 m/s threshold) does not induce port disruptions. I also verify
that stronger exposure induces larger disruptions in port activity. I estimate Equa-
tion (1) by splitting the treated group by the duration of exposure to at least 18 m/s.
Hours of exposure proxy for both the port’s distance to the ship-avoidance area and
the cyclone’s intensity. Figure C.2a confirms that the bulk of port-level disruptions are
induced by long exposure (at least 12 hours) to sustained wind speeds.

Second, the data allow me to distinguish between ship types. I estimate Equation
(1) using port—ship-type—specific outcomes: containerized vs. other ships (e.g., bulk).
Container ships (or “liner” ships) typically operate along fixed, pre-planned lines, lim-
iting real-time route adjustments, while owners/operators of other ship types have
comparatively more flexibility in scheduling (Ksciuk et al., 2023). Figure C.2b shows

that container ships are less responsive to port exposure to cyclones, consistent with

effect is consistent with the findings of Verschuur et al. (2020). Reviewing the effect of natural disasters
on port operations using vessel tracking data, they find a median disruption duration of six days.
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pre-scheduled shipping.

3.3 ROUTE CHOICE

I then examine how port exposure to cyclones affects firms’ choice of shipping routes.
I seek to understand whether route choice serves as a margin of adaptation after firm
pairs are treated. I use monthly aggregates of the Brazilian shipment data at the
buyer-supplier-route level (b,s,r), where routes r are proxied by the pair of ports
through which shipments are loaded (port of origin p,) and unloaded (port of desti-
nation p;).?> The outcome of interest is a monthly measure of the extensive margin
of route activity: a binary variable equal to 1 if there is a positive number of ship-
ments between b and s using route r, and 0 otherwise. Route activity is conditioned
on relationship-route entry — i.e., a route can be active for a relationship only after its
first shipment on that route.?* I also consider an intensive margin outcome — namely,
the log of the total weight of shipments between b and s using route r, conditional on
relationship—route activity.

To construct the sample, I aim to compare relationship-routes that are as similar
as possible in frequency, volume, and timing of shipments. I define an event window
of 5 months before and 10 months after each cyclone event 7, where T refers to the
month in which the first observation of a cyclone track is recorded at sea.”” I sam-
ple relationship-routes that trade at least once within the 5-month pre-shock window,
thereby restricting attention to relationship-routes active before the shock. Relation-
ship-routes are treated if their port of origin is exposed to tropical cyclones at event 7.
Importantly, ports of destination (i.e., Brazilian ports) in the sample are not exposed to
tropical cyclones (see Figure 2a), allowing me to define treatment solely on the basis
of origin ports. I consider the following specification to estimate the effect of cyclone-

induced port disruptions on route choice:

Ypsrtr = 2 [ﬁhEpo er,T + 5hszr,h,T + “h,r] + Xpsr,T + Kps t + Epsrt,T 1 (2)
h=-5

ZBFormally, routes are also defined over the origin and destination regions of shipments:
{no,n4,po,pa}- Conditional on (geolocated) firms fixed effects, route definition boils down to {p,, pa}-

24This avoids comparing poorly defined potential routes — i.e., periods before a route’s first recorded
shipment. If a relationship’s first shipment on a route occurs within the first year of the sample,  assume
the relationship—route enters in the first month of the sample.

27 refers to a month in which at least one cyclone forms and at least one port is exposed. A cyclone
event may include multiple cyclones, and ports may be exposed several times within the same event.
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where 1y, r corresponds to the outcome of interest for relationship—route (b,s,r) at
month t around cyclone event 7. In the baseline specification, the treatment variable
Ep,err is binary, equal to 1 if the port of origin p, in route r was exposed to at least
18 m/s of sustained wind speed at event 7. The regression includes time—event, rela-
tionship-route—event, and relationship—month fixed effects. This specification restricts
comparisons to route choices within relationships and within events. Control vari-
ables X, , r are time dummies interacted with pre-treatment characteristics of each
relationship-route.?® Standard errors are clustered at the relationship level.

Figure 4a reports the estimation of Equation (2) on route activity, 5 months before
and 10 months after the shock. Results indicate that port exposure to cyclones de-
creases trade through affected routes for about 2 months, relative to unaffected routes.
At the time of exposure, the effect corresponds to a 12% decrease in the probability
of using the affected route.?” Figure 4b shows that firms do not adjust shipment size
when they continue trading through the affected route. Because the specification in-
cludes relationship-level fixed effects, the estimated impact of rerouting reflects an
additional adjustment margin beyond any direct disruption at the firm-to-firm level.
In other words, the results isolate the role of route substitution as a distinct channel of

adaptation, separate from the overall continuity of trade relationships between firms.

Heterogeneity and sensitivity. The short-lived treatment effect on route choice sug-
gests that firms adapt ex ante to the possibility of increased transportation costs due
to weather shocks.?® Still, Equation (2) pools all treatments and does not capture het-
erogeneity in treatment effects based on a relationship’s treatment history. I there-
fore decompose Equation (2) by including two treatment variables: 1; s X Epoero

which equals 1 if the treatment at 7 is the first experienced by relationship (b,s), and

]11<

por X Ep,er,r, which equals 1 for any subsequent treatment. This allows me to exam-

ine whether firms learn or adapt following past events. Figure C.3a shows that the
rerouting mechanism is much more pronounced for the first treatment than for sub-
sequent ones. Route activity decreases for up to six months following the first port

exposure to a cyclone — well after port operations resume. By contrast, subsequent

26These include the number of shipments, the number of active months, and the month of the last
shipment within the 5-month pre-treatment period.

#The unconditional probability of route activity in the pre-shock window is 0.43.

2This fact is consistent with the findings of Castro-Vincenzi et al. (2024), who observe mean reversion
in supply chain composition following flood shocks to firm premises.
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Figure 4: The impact of port exposure to cyclones on route choice

Notes: These panels plot the effect of port exposure to tropical cyclones on monthly firm-to-firm-route-
level outcomes, as specified by Equation (2). The outcome in Panel 4a is a binary variable equal to 1 if
at least one shipment is observed for the trading pair through route r in month ¢ (active route), and 0
otherwise. The outcome in Panel 4b is the log of total weight (kg) shipped through route r in month
t, conditional on the relationship-route being active. Regressions include relationship—month fixed
effects, and control for time dummies interacted with relationship-routes’ pre-treatment characteristics.
Standard errors are clustered at the relationship level. The bars show 95% confidence intervals. Black
dots indicate point estimates significant at the 5% level, gray squares at the 10% level, and empty dots
denote estimates that are not significant at the 10% level.

treatments lead to only a one-month decline in route activity, likely reflecting the me-
chanical effect of port closures. This suggests that firms learn from experience and
quickly converge toward ex ante adaptation in response to future shocks.

Route choice may also be constrained by which party schedules shipments. Con-
tainerized goods are typically carried by liner ships, operated by large companies
along fixed, pre-planned services. While firms can switch operators, choices may
be limited by compatibility between preferred ports and the ability of those ports
to service container ships. Bulk shipping, by contrast, generally offers greater flexi-
bility in scheduling vessels and ports. To assess the importance of these constraints,
I decompose Equation (2) by allowing treatment effects to differ between container-
ized and non-containerized shipping. I define 1j . X Ey /¢ to equal 1 if the rela-

tionship traded only containerized goods in the 5-month pre-treatment window, and

]ll’lOI'l—C

psrt X Epserc to equal 1 if at least one shipment was non-containerized. Figure C.4a

shows that non-containerized shipping accounts for most of the treatment effect, con-

sistent with greater scheduling flexibility outside containerized services.

3.4 FIRM-TO-FIRM DISRUPTIONS

I finally turn to the effect of port exposure to cyclones on firm-to-firm trade. I am

mainly interested in the extensive margin of firm-to-firm trade — that is, in supply
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chain composition. I use monthly aggregates of the Brazilian shipment data at the
buyer—supplier level (b,s). My first outcome of interest is a monthly measure of rela-
tionship activity, defined as a binary variable equal to 1 if a positive number of ship-
ments occurs within the relationship (b,s) in month ¢, and 0 otherwise. Relationship
activity is conditioned on the entry of both the buyer and the supplier, respectively
defined as the month of the first recorded shipment received by b or sent by 5.2 T also
consider an intensive-margin outcome, defined as the log of total shipment weight
between b and s, conditional on relationship activity.

The sample is constructed analogously to that in Section 3.3, though selection cri-
teria are defined at the relationship (b,s) level. Treated relationships are those that
used at least one exposed port of origin during the pre-shock window. I consider the
following specification to estimate the effect of cyclone-induced port disruptions on

firm-to-firm trade:

10
Yostr = Z [,BhEpUeRZS,T + ‘Shsz,h,T +ap |+ &psr+ Apr+ Asp+ Epst s 3)

h=—5
where vy, ; ; denotes the outcome of interest for buyer-supplier relationship (b,s) in
month t around cyclone event 7. In the baseline specification, the treatment variable
Ey ery ¢ is binary, equal to 1 if at least one port of origin p, used by the relationship
(i.e., in the set of routes R},) was exposed to sustained wind speeds of at least 18 m/s
during event 7.%° The regression includes buyer-month and supplier-month fixed ef-
fects, which absorb buyer- and supplier-specific shocks. This is important for isolating
the effect of cyclones on the ports used by relationships while controlling for potential
direct effects on suppliers themselves. Control variables X j, - are time dummies in-
teracted with pre-treatment characteristics of each relationship.?! Standard errors are
clustered at the buyer level.
Figure 5a reports the estimation of Equation (3) on relationship activity, 5 months

before and 10 months after the shock. Results suggest that port exposure to cyclones

ZHere, 1 follow Balboni et al. (2024). As for route activity, this avoids comparisons between poorly
defined potential relationships — i.e., before the first recorded activity of the trading parties. When the
first recorded shipment is observed within the first year of the sample, I assume that the firm enters
during the first period of the sample.

9The set of routes R}, is time-dependent, as it is defined using the pre-shock window.

31 As with relationship—routes, these include the number of shipments, the number of active months,
and the month of the last shipment within the 5-month pre-treatment period, specified at the
buyer—supplier level.
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Figure 5: The impact of port exposure to cyclones on firm-to-firm relationship

Notes: These panels plot the effect of port exposure to tropical cyclones on monthly firm-to-firm-level
outcomes, as specified by Equation (3). The outcome in Panel 5a is a binary variable equal to 1 if at least
one shipment is observed for the trading pair in month ¢ (active relationship), and 0 otherwise. The
outcome in Panel 5b is the log total shipment weight for the relationship, conditional on the relation-
ship being active. Regressions include buyer—time and supplier—time fixed effects, and control for time
dummies interacted with relationships’ pre-treatment characteristics. Standard errors are clustered at
the buyer level. The bars denote 95% confidence intervals. Black dots indicate point estimates signifi-
cant at the 5% level, gray squares at the 10% level, and empty dots denote non-significant estimates at
the 10% level.

has a small, short-lived effect on the extensive margin of firm-to-firm trade, followed
by a full recovery in the probability of activity. The effect is largest one month after
cyclone onset, corresponding to a 17% decrease in the probability of trading for treated
relationships compared to untreated relationships.>? Figure 5b suggests that firms do
not adjust shipment size when they continue trading. Overall, results at the firm-
to-firm level indicate that rerouting is a sufficient mechanism to prevent significant

supply-chain recomposition.

Heterogeneity and sensitivity. I investigate the same heterogeneity dimensions as in
Section 3.3, i.e., along the treatment history and by containerization status of ship-
ments. Figure C.5a shows no significant differences between first and subsequent
treatments of firm pairs, suggesting that most learning occurs along the route-choice
margin. Trade in containerized goods, however, exhibits larger and more persistent
disruptions in firm-to-firm activity — up to three months of reduced activity (see Fig-
ure C.6a). This pattern is consistent with constraints in containerized shipping: when
scheduling limits route flexibility, higher transportation costs induce sourcing disrup-

tions.

32The unconditional probability of relationship activity in the pre-shock window is 0.42.
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4 THEORY

In this section, I develop a theory of spatial production network formation with en-
dogenous trade costs and weather shocks to trade infrastructure. The model ratio-
nalizes my empirical findings: (i) tropical cyclones affect the operations of maritime
ports and induce firm-to-firm trade disruptions; (ii) firms adapt to these disruptions
by rerouting trade; and (iii) so as to preserve sourcing relationships. I use the model to
perform counterfactual simulations under a climate change scenario and to evaluate
infrastructure-related adaptation policies.

To parsimoniously capture the empirical evidence on the impacts of trade infras-
tructure exposure to weather disasters on global supply chains, I assume that, in a
production network environment similar to Oberfield (2018), firms make joint sourc-
ing and routing decisions based on suppliers” factory-gate costs and transportation
costs.®> Transportation costs are endogenous to traffic congestion, as in Allen and
Arkolakis (2022), and for maritime routes include the costs of using port infrastruc-
ture, which is potentially affected by weather disasters. Firms are perfectly informed
about the underlying distribution of weather-related risks to port infrastructure.

The model can generate predictions that are not testable in the reduced-form em-
pirical evidence in Section 3. First, the model incorporates traffic congestion, which is
likely to affect transportation costs in the long run. Section 3 shows that firms adapt
to weather shocks by redirecting trade through alternative routes. If traffic conges-
tion increases the cost of using these alternatives, such adaptation may, in turn, distort
the bilateral components of sourcing shares and affect the aggregate impact of infras-
tructure exposure to weather disasters. Second, while the empirical results describe
reactions to single weather events, they do not address a local shift in the distribution
of events —i.e., a shift in port-level climate conditions. The model accommodates such
a counterfactual by assuming that a shift in the distribution of weather disasters is
akin to a sequence of realized events through which firms update their information

about the probability distribution of extreme weather events.3*

3] draw from the model of endogenous production network formation under idiosyncratic and ag-
gregate weather-disaster risks presented in Balboni et al. (2024). Chen et al. (2023) proposes a related
model in which technology compatibility between firms shapes the marginal costs of inputs. I extend
this class of models to include a geography, endogenous trade costs, and transportation-related weather
risks.

3 Although static, the model can also describe the immediate aftermath of a weather disaster and
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Environment. The economy consists of a discrete set N of regions (indexed by n or '),
each populated by a unit measure of firms, M, =1 Vn € N/, and an exogenous mea-
sure of households L, € {L,},ca = £. Each region is endowed with a fundamental
productivity a, € {a,},en = A. Some regions contain port infrastructure, which en-
ables trade across regions that are not directly connected by land.* The set of ports is
denoted P. Both regions and ports are connected through a transportation network, i.e.,
a set of bilateral trade frictions incurred when shipping directly from one location (a
region or a port) to another. The transportation network depends on both endogenous
variables (traffic) and exogenous ones (distance and capacity). Regions are distant
from each other, with a bilateral measure of distance €,y € {€,/}, ven2 = D. Each
port has a capacity K, € {Kp},ep = K (e.g., port berths). Regions are connected via a

countable set of routes R, which allow for trade in intermediate inputs.

Households. Households in region n inelastically supply labor /; to local firms and

consume a bundle of differentiated final goods supplied by local firms:

a

=1\ 71

where ¢; is the quantity of final goods supplied by firm i € M,,, and ¢ > 1 is the elastic-
ity of substitution across varieties of final goods in region n. I assume no trade in final

goods and no migration across regions.>® Households face the budget constraint:

/ieM gipidi = wy + 11, 5)

where p; is the price charged by firm i for final goods, w, is the wage rate in region #,

and I, denotes per-capita profits rebated from firms to households in region .

Firms. Firms produce by combining local labor with perfectly substitutable interme-
diate inputs supplied by other firms along different routes. Each firm faces a mass
of potential suppliers located in all regions (including its own) and a set of delivery

routes. A specific combination of labor, input, and delivery route yields a technique of

therefore accommodate the dynamic — but short-lived — disruptions described in Section 3.

%Regions may contain multiple ports.

%These are restrictive assumptions, but they map directly to the evidence presented in Section 3, and
to the fact that the bill of lading data only include firm-related transactions.
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production, defined over a supplier-buyer match ¢ and a delivery route r:

yi($,r) = x i I} (2(9)xi(¢,1))", (6)

where J; is the amount of labor used by firm i, x;(¢,r) is the amount of intermediate
inputs supplied through route r, z(¢) is the match-specific input-augmenting produc-
tivity, and a,,; is the productivity shifter of region n (i ).

Firms choose the technique that yields the minimum marginal cost of production,
at which they sell their goods to other firms —i.e., buyers have full bargaining power
(Oberfield, 2018). When selling final goods to local households, firms engage in mo-
nopolistic competition. Trade in intermediate inputs is subject to route-specific iceberg
costs: for each unit required in production, T, (i) (r) > 1 units must be shipped from
supplier region 71(j) to buyer region n(i) along route r. The factory-gate marginal cost
of production using technique (¢,r) is therefore:

“a

ci(¢p,r) = #(; <Tn(j)n(i)(r) CZ](((Z)))) , ?)

where c;(¢) is the marginal cost of inputs from supplier j. I assume the following

distributional form to obtain a tractable characterization of the equilibrium:

ASSUMPTION 1. For any firm i in region n, the number of potential suppliers j € M, from
which i can draw a match with productivity z > Z follows a Poisson distribution with mean

a,yZ=¢, where a,y is the fundamental productivity of firms in region n'.

Assumption 1 describes the distribution of match-specific productivity among the
techniques available to a firm in region n. The parameter ¢ governs the tail behavior
of the distribution of productivity draws (Oberfield, 2018; Chen et al., 2023; Balboni
et al., 2024). A higher value of ¢ implies more similarity across draws, making buyers
more willing to substitute toward alternative suppliers when route-level or factory-

gate costs increase.

Shipping. Firms from region n can ship to any other region.® However, shipments

%7 is a normalizing constant equal to a~*(1 — a)~(17%),

3With a slight abuse of terminology, shipping encompasses both road and maritime transportation.
In this setting, transportation mode choice (e.g., road vs. maritime) is implied by route choice, with
an elasticity equal to the dispersion of match-specific productivity ¢ governing firm-to-firm matching
(Fuchs and Wong, 2024).
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may be indirect, as some regions are not directly connected (e.g., by a direct road or
a maritime route). Shipping routes are composed of a countable set B, of legs, with
|B,| — 1 stops from origin n (k = 1) to destination n" (k = |B,|). Each stop may be a
port or a region. Each stop involves leg-specific iceberg transportation costs between
locations, as well as port-level transportation costs. For a route r connecting n to n’

through |B,| legs, including | P,| ports, the transportation costs are give by:

15, P
ﬁwﬂMOOOZZJIdm]mkI!fmmm- (8)
=1 m=

Following Ganapati et al. (2024), I allow transportation costs to depend on both en-

dogenous and exogenous variables:

drkflrrk = d(erkflrrk)’ tp(r)m = t(E’ KP(V)m) X GP(Y)m’ (9)

where €,,_, , denotes exogenous transportation costs (i.e., distance), Z is a matrix of
traffic flows, K . denotes port-level infrastructure capacity, and 6, denotes port-

level weather-related wedges, with the following assumption:

ASSUMPTION 2. Port-level wedges are randomly drawn from a Pareto distribution with c.d.f.

FP(”)(G) =1- 9_%’(’) fOT’ Qp(,,) > 1.

Assumption 2 describes the distribution of port-level wedges. With a higher shape
parameter §,,,), firms will on average draw lower transportation cost wedges, as the
tail of the distribution becomes thinner. This assumption ensures that transportation
costs in Equation (8) remain tractable. The set of shape parameters {{, } e governing
these weather-related wedges —i.e., climate trade costs —is denoted ¥ and summarizes

the port-level tropical cyclone climate.

Sourcing and routing decisions. I first characterize the distribution of factory-gate

costs:

PROPOSITION 1. Under Assumption 1, the marginal cost of firms in M, follows a Weibull

distribution:
N I T
P(ci(¢,r) >c) =exp | — (an/wf‘l,_ ) Zan c, Z Hdrkq,rk H Eo et | (10)
n reR. k=1 m=1

nn
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where ;¢ = abwl* V¢ (Z”ﬁfﬁg )3 Hdﬁgl,rk fp(r)m> e o
i r€Rin k=1 m=1
e < Pp()m
and 16 =HE Ky, IR (12)

Proof. See Appendix D.1.

This result follows from the fact that, if the effective price of inputs for suppliers
in all origin regions and delivering through any route follows a Weibull distribution,
then the distribution of factory-gate prices for all firms i in destination n’ also follows
a Weibull distribution.’* The production-network structure affects the distribution
of marginal costs through the factory-gate costs of upstream suppliers, as shown in
Equation (11), which specifies downstream cost indices as a fixed point. Transporta-
tion costs depart from related models of production-network formation (Chen et al.,
2023; Balboni et al., 2024) by explicitly incorporating the set of links and transporta-
tion infrastructure that compose routes. I characterize the joint sourcing and routing

decisions of firms as a corollary to Proposition 1.

COROLLARY 1. The probability that firm i in n’ sources from route r connecting n to n’ is:

B, Pr| 7—
ancngn‘ |d7kg17’kH7‘7fl 1 Pé
B, Pr
ZnanC~CZreR /H| |d”k€1 ka|m |1tpé

7Tz',r - (13)

Proof. See Appendix D.1.

Equation (13) represents the unconditional probability of choosing route r to source
goods. Given that route r links destination 7’ to origin n, Equation (13) jointly specifies
the sourcing region and the delivery route. Because this probability is independent
of firm i characteristics, 77;, is also the share of expenditures of region n’ on region n
through route . Aggregating the sourcing-routing shares across routes yields region-

to-region bilateral trade shares, as shown in Corollary 2:

%1 define the effective price of inputs delivered by supplier j through route r as

|B,|

. 7]
)\ - H yklkat
m=1
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COROLLARY 2. The bilateral trade share between n' and n is:

=1 (14)

1
5| L P ¢
where T, = Z Hdrk—lfrk tp(r)m . (15)

reR,, \k=1

Proof. See Appendix D.1.

Equation (14) resembles that of traditional trade models, with the addition of pro-
duction network-affected marginal-cost indices ¢,, and endogenous transportation costs.
Equation (15) captures the departure from trade models with endogenous routing
(Allen and Arkolakis, 2022; Ganapati et al., 2024; Fuchs and Wong, 2024) by explic-

itly incorporating infrastructure-level costs.

Equilibrium transportation costs. Define the auxiliary matrix of bilateral transporta-
tion resistance A as a (|[N| + |P|) x (JN'| 4+ |P|) matrix. Each of the first |\/| rows and
columns of A corresponds to a region, while each of the last |P| rows and columns
corresponds to a port. Denoting both regions and ports as locations, indexed by [ or I/,
the (1,1') entry &) of A is zero if | and I’ are not directly connected. If the two locations
are connected and !’ is a port, then é;; = ﬁll_l,é t, é'r; if the two locations are connected and
I' is not a port, then &,y = dl;,g. It follows that the region-to-region transportation costs

are given by the Leontief inverse of the auxiliary matrix A:

of -1
[T ] = [(I - A)il} ( (:) : (16)
The conditional probability that a good passes through port p, given origin n and
destination 7/, is:*° :
[ Tap T\
o= (22) 7 @

Using these port-level conditional probabilities, I characterize traffic as the total value

of goods that transit through ports:

Ep =33 O Xun, (18)

n n

“0Here, I follow Allen and Arkolakis (2022) and Ducruet et al. (2024).
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where X, is the total trade value from n’ to n. Equation (9) implies that port traf-
fic affects transportation costs — a form of externality that firms do not internalize
when making sourcing-routing decisions. I formalize this idea with the following

parametrization of bilateral and port-level transportation frictions:

dCoM pt g Y (19)
nn nn p p=tp 1/)}7 +¢
where A is the elasticity of link-level costs to distance, A; is the elasticity of port-level

costs to port traffic, and Aj is the elasticity of port-level costs to port capacity.*!

Closing the model. Appendix D.2 completes the description of the model environ-
ment. The model closes with a goods market—clearing condition, which requires that

trade in intermediate inputs be balanced.

Equilibrium. The economy is characterized by a set of parameters {c,a,{,A1,A2, A3},
a geography G = {N,P,L, M, A,D,K, ¥}, and a distribution of wages and factory-
gate prices {wy,Cp}nen, such that markets clear and the transportation network is
in equilibrium. Appendix D.3 formally defines the general equilibrium of the model
with traffic congestion and provides the system of equations that characterize it. Ap-
pendix D.4 describes the numerical algorithm implemented to recover counterfactual

equilibria.

5 BRINGING THE MODEL TO THE DATA

The aim of this section is to quantify the model so that it matches global data at the
subnational level in the early 21% century. To do so, I first estimate the key parameters
of transportation costs using Brazilian bill of lading data.*> Other economy-wide pa-
rameters are drawn from the literature. I then use these parameters, together with a
model inversion, to map the model’s geography G onto global observables.

I recover the following parameters and fundamentals: the measure of labor (L;);
fundamental region-level productivity (a,); port capacity (Ky); the elasticity of trans-
portation costs with respect to distance (A1), traffic (A7), and port capacity (A3); port-

level weather dispersion (¢,); the final-goods elasticity of substitution (¢); the inter-

#'From Proposition 1, Assumption 2, and the definition of port-level trade costs in Equation (9),

[,°=tEK,) ¢ % I parametrize t(E,K,) ¢ = B K.
2 A caveat of this exercise is that, due to data constraints, I calibrate a global model with local data

from Brazil. An implicit assumption is that the estimated elasticities have external validity.
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Table 1: Calibration of parameters and fundamentals

Parameters Description Source/Procedure

Panel A: Parameters from related literature

c=2 Final goods CES Castro-Vincenzi (2024)

a=028 Intermediate input share ~ Balboni et al. (2024)

=38 Trade elasticity Allen and Arkolakis (2022)

Panel B: Calibrated parameters

A =—-048 Distance elasticity Section 5.1

Ay =—0.25 Traffic elasticity Section 5.1

A3 =042 Capacity elasticity Section 5.1

Fundamentals Description Source/Matched moments

Panel C: Calibrated fundamentals

N Regions Aggregation at GAUL1 level

P Ports IMF PortWatch

L Population Rossi-Hansberg and Zhang (2025)

A Region-level productivity =~ Matched to Rossi-Hansberg and Zhang (2025)
D Distance Eurostat SeaRoute & Great-circle distance
K Port capacity IMF PortWatch

{Yp}per Climate trade costs Section 5.1

mediate input share («); and the dispersion of match-specific productivity (¢). Table
1 summarizes the provenance or procedure used to obtain the calibrated parameters

and fundamentals. Section 5.3 describes validation tests of the baseline calibration.

5.1 ESTIMATING TRANSPORTATION COSTS

I aim to recover a set of transportation costs that accounts for the effects of traffic, port
capacity, and weather risk. To estimate the parameters of transportation costs, I use a

reduced-form analogue of route-level bilateral trade shares (Corollary 1):

log(n;’;’fﬁfi’) = Qo t + Uyt + &p, ¢ + aqlog(Distance,) + ap log(E;fH)

(20)
+ a3 log(K;fu) + aglog(CycloneRiskpy,) + €yt

I bring Equation (20) to the data by constructing a microdata analogue of the route-

value

gt 18 defined

level bilateral trade share from Brazilian bill of lading data. That is, 7
as the weekly share of shipment value that destination location n; sources through
route r. In the data, locations refer to GAUL1 subnational units, while routes are ap-
proximated as the quadruplet {n,,n4, po, p4}, where p, and p, are the ports of origin
and destination, respectively. The distance component of transportation costs is ap-

proximated as the least-cost land—sea distance traveled by goods from supplier origin

to buyer destination, passing through p, and p;. I use weekly estimates of total TEU
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volumes transiting through ports from PortWatch to proxy port-level traffic. Port ca-
pacity is proxied by the 99" percentile of daily TEU traffic processed by each port over
the sample period (2019-2023). I proxy cyclone risk using expected wind speed at the
port, as reported in the STORM data (see Figure B.2a).*> Origin-time and destination-
time fixed effects control for any origin or destination general equilibrium terms in
Equation (13).

Regressing route-level bilateral trade shares on port traffic and port capacity is vul-
nerable to simultaneity: both regressors are equilibrium-derived outcomes in the mar-
ket for port throughput, so unobserved shocks that shift demand or supply curves
also enter the error term. I address these endogeneity concerns by estimating Equation
(20) with two-stage least squares (2SLS) and two orthogonal curve-shifters. Port traf-
tic is instrumented with global container throughput interacted with each port’s 1950
coastal-population share —a predetermined demand shifter that scales worldwide traf-
tic variations across ports while leaving local handling costs unchanged. Capacity is
instrumented with mean terrain ruggedness within 20 km of the port, a geologic sup-
ply determinant that raises inland evacuation costs and therefore limits optimal port
capacity, while remaining exogenous to current trade flows. Appendix E.1 details the
construction of the instruments and documents robust first-stage relevance for both
port traffic and capacity.

Table 2 reports the results. Conditional on port capacity, a 1% increase in port
traffic reduces route-level bilateral trade shares by 1.78%. Assuming a trade elasticity
of ¢ = 8 (Allen and Arkolakis, 2022), this implies a 0.22% increase in port-level trade
costs.** Conversely, a 1% increase in port capacity decreases port-level trade costs by
0.30%, indicating the presence of scale economies.* Furthermore, a 1% increase in

cyclone risk lowers route-level bilateral trade shares by 0.08% — corresponding to a

0.01% increase in transportation costs.

Aw
#Formally, | parameterize tpﬁc = CycloneRisk, = (1 + windspeedg,o)> , where windspeedéo) is com-

puted as the yearly mean expected wind speed in cells within a 50 km radius of the port under the
current climate; A, is the elasticity of transportation costs with respect to expected wind speed.

#By comparison, Allen and Arkolakis (2022) find an elasticity of traffic flow (per lane) with respect
to transportation cost of 0.09 in the US highway system.

Given the high observed correlation between port-level traffic and capacity, this finding is consistent
with Ganapati et al. (2024), who document scale economies in the maritime network, although they do
not disentangle traffic from capacity.
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Table 2: Estimation of transportation costs

nvalue

ng,r,t
D 2)

Log Port Origin Traffic -0.01 -1.78

(0.03)  (0.25)
Log Port Origin Capacity 0.15 2.36

(0.04)  (0.31)
Log Distance -0.36 -0.46

(0.03)  (0.04)
Log Cyclone Risk -0.02 -0.08

(0.01)  (0.01)
Observations 90,504 90,504
Adjusted R? 0.67 0.64
Wald-F, Log Port Origin Traffic 9,476.47
Wald-F, Log Port Origin Capacity 9,453.84
ni-week fixed effects v v
n,-week fixed effects v v
pa-week fixed effects v v

Notes: This table presents the results of the estimation of transportation costs, as specified by Equation
20. The outcome is the log weekly share of shipment value that destination location 7, sources through
route r. Port Origin traffic refers to weekly estimates of total TEU volumes transiting through ports of
origin of shipments. Port Origin Capacity refers to the 99" percentile of daily TEU volume at ports.
Distance refers to the total route distance (land and sea). Cyclone Risk refers to the expected windspeed
at ports, as reported in the STORM data. Panel (1) reports the OLS estimation, while Panel (2) reports
the 2SLS estimation. Robust standard errors are clustered at the {n,, 14, po, pa }-week level.

5.2 FUNDAMENTALS AND ECONOMY-WIDE PARAMETERS

Parameters from the literature. I follow Castro-Vincenzi (2024) by setting ¢ = 2, and
Allen and Arkolakis (2022) by setting ¢ = 8. I set the intermediate-input share to « =
0.8 following Balboni et al. (2024).

Fundamentals. The model is calibrated at the GAULI1 level. I calibrate GAUL1-level
population using Rossi-Hansberg and Zhang (2025), which provides population es-
timates at 1° spatial resolution. I assign the ports in PortWatch to each GAUL1 unit
and use the 99" percentile of daily TEU traffic as a measure of port capacity. Dis-
tances between regions are approximated by great-circle distances between GAULL1
centroids. For computational sparsity in the transportation-network matrix, I retain
centroid distances only for contiguous region pairs identified via polygon contiguity

(tirst-order neighbors). I use Eurostat’s SeaRoute program to calculate the shortest sea
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routes between ports. As in Section 5.1, I parametrize IIJ;PJ”FE =(1+ windspeedéo))/\lv,
where windspeedéo) is the yearly mean expected wind speed in cells within a 50 km
radius of the port under the current climate (see Figure B.2a), and A, is the elasticity
of transportation costs with respect to expected wind speed.

With the remaining model parameters calibrated, I recover region-level fundamen-
tal productivity by inverting the model so that it matches the local GDP-per-capita es-
timates reported by Rossi-Hansberg and Zhang (2025) at 1° spatial resolution. I com-
pute the population-weighted mean GDP per capita within GAUL1 subnational units
as a proxy for region-level wages. Using an inversion of the equilibrium conditions, I

obtain the vector of fundamental productivities that rationalizes observed wages. The

inversion procedure is described in Appendix E.2.

Geography sample. I subsample the geography data to reduce the dimensionality
of the numerical problem and remove outliers. The raw geography comprises 2,381
GAUL1 subnational units (regions) and 1,666 ports from PortWatch. I first remove
regions whose population and GDP-per-capita estimates are zero due to measurement
error. I also remove ports whose port capacity is zero, due to very low and infrequent
activity. A model requirement is that the transportation network be a complete graph
—i.e., all locations (regions and ports) must be linked to every other location through
at least one route. I retain all regions that are part of the largest connected graph the
transportation network, resulting in 2,246 regions. I then truncate the port data to
retain only the top 750 ports, ranked by total traffic volume across the sample (see
Figure E.1). These ports account for 97% of total TEU volume and 86% of total vessel
counts in the PortWatch data (2019-2023).

5.3 MODEL FIT

Before using the model to simulate future changes in port climates, I verify the plau-
sibility of the quantification. I show that the model’s predictions align well with data
moments for maritime traffic, local productivity, and trade. I also confirm that con-
gestion in transportation networks — a novel feature in models of spatial production
networks — is a key mechanism for fitting the data.

I first compare the model-based estimates for port traffic and fundamental produc-

tivity to their data counterparts. Figure 6a compares the model-derived port traffic
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Figure 6: Model fit

Notes: These panels compare model-based moments to their (untargeted) data counterparts or proxies.
Panel 6a plots log-normalized port traffic in the data — measured as average yearly total TEU volume —
(x-axis) against log-normalized model-based estimates of port traffic (y-axis). Panel 6b plots per-capita
nightlight intensity at the GAULI1 subnational level in the data (x-axis) against log-normalized model-
based estimates of fundamental productivity (y-axis). Model-based moments are obtained from the
inversion procedure described in Appendix E.2.

(normalized by the maximum) to the average yearly total TEU volume in the Port-
Watch data (equally normalized), in logs. The model performs well in predicting port
traffic, with a correlation of 0.86, despite port traffic being an untargeted moment. Fig-
ure 6b compares log fundamental productivity recovered from the model inversion
with log per-capita nightlight intensity — a data-driven proxy for local productivity.
Nightlight data are taken from Li et al. (2020) and aggregated at the GAUL1 level.
While the comparison remains noisy, model-based fundamental productivity is posi-
tively correlated with per-capita nightlights (0.32).

I then verify the model fit with country-level bilateral trade shares. Figure E.3 com-
pares log country-level trade shares — recovered from GLORIA input-output tables
(IELab, 2025) — with their model-based counterparts. The model replicates the rank-
ing of bilateral trade shares (correlation = 0.56), although it overestimates the level of
domestic trade shares.*® This discrepancy arises because the model does not explicitly
account for domestic trade infrastructure — domestic trade costs are normalized to one.

Finally, to illustrate the role of port-level congestion in fitting the data, I solve
for the equilibrium of the model with no congestion spillovers (A, = 0). Figure E.2

compares the fit of model-based port traffic to the data with and without congestion

#This implies that the counterfactual simulations provide lower bounds for welfare impacts from
changes in transportation cost fundamentals.
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spillovers. While the correlation with the data remains high (0.87), removing conges-
tion significantly compresses the dispersion of port traffic estimates — highlighting that
congestion spillovers are quantitatively important for explaining heterogeneity in port

traffic.

6 QUANTITATIVE RESULTS

This section quantifies how firms’ private responses shape the welfare effects of port-
level climate change. I examine a counterfactual in which cyclone-related wind risk at
ports rises under an unmitigated climate change scenario (RCP8.5). Comparing equi-
libria with and without rerouting isolates the adaptation margin and its implications

for port traffic and regional welfare.

Climate change at ports and private rerouting. I first investigate the effect of a shift in
the distribution of cyclone-related wind speed at ports on maritime traffic and global
welfare. I infer the climate-change-induced increase in extreme wind events at the
port level using the expected wind speed from the STORM data under an RCP8.5 sce-
nario (see Figure B.2b). The change in predicted wind conditions around port locations
provides my main counterfactual variable. In practice, I solve for the equilibrium at
baseline (see Section 5.2), and compare model-based outcomes to alternative equilibria
with changes in fundamentals.

Two main outcomes of interest are the change in port traffic and the change in
region-level welfare. Port traffic is given by Equation (18). Welfare is defined as region-

level real income, formally derived in the following proposition:

PROPOSITION 2. Region-level welfare in this economy, measured as real income, is given by:

& c—1

¢
At —1
Vi = Lywy |apwty ! (Zan,c-n,grn,fl') r (1 — —“(UC )) (21)

n/
Proof. See Appendix D.5.

Figure 7a plots regional welfare changes under a climate change scenario. While

aggregate welfare is virtually unaffected (+0.005 basis points), substantial heterogene-

5th

ity emerges. At the 5™ percentile, welfare losses amount to -0.47 bp, while welfare

5th

gains at the 95" percentile reach 0.12 bp. Welfare losses are generally concentrated
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Figure 7: Quantitative results - Present to RCP8.5 (2020-2050)

Notes: These Panels present the change in port traffic and region-level welfare, in a scenario of in-
creased climate risks at ports. In Panels (a) and (b), I allow firms to reroute optimally to avoid increased
transportation costs. In Panels (c) and (d), the routing choice is fixed as baseline. All outcomes are
generated using the algorithm described in Appendix D.4. The color scales of all Panels are truncated
at the 1°* and 99 percentiles.

in well-defined areas — e.g., Africa and South America — illustrating the presence of
localized spillovers. Port traffic (Figure 7b) shows similar variation. At the 5th per-
centile, ports experience a -0.98% decrease in traffic, while at the 95" percentile traffic
increases by 0.79%. Aggregate traffic decreases by 0.26%. Wind speed risk shifts trade
toward less affected ports: Figure 8a shows a negative correlation between expected
wind speed change and traffic change. The observed variance in port traffic change
reflects the trade-off between increased weather risk at ports and congestion spillovers

induced by rerouting.

Rerouting as adaptation. I seek to disentangle the role of rerouting, which induces
spillovers in general equilibrium, from the increase in weather risks. To do so, I simu-
late an equilibrium with the same increase in weather risks as in the RCP8.5 counter-
factual, but restrict route choice to baseline — that is, I shut down the rerouting margin.
In practice, the probability that a good passes through port p conditional on origin

n and destination n’ is not given anymore by Equation (17), where t,,,, encompasses
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Figure 8: Port traffic and expected wind speed costs

Notes: These panels plot the change in port traffic against the change in expected wind speed from
tropical cyclones. On the x-axis, I plot the change in yearly mean expected wind speed recovered
from the STORM model, under both the current and future RCP8.5 climate. I remove port with zero
expected windspeed at baseline, and truncate the data at the 5% and 95™ percentile in expected wind-
speed change. On the y-axis, I plot the change in port traffic, generated using the algorithm described
in Appendix D.4. In Panel 8a, I allow firms to reroute optimally to avoid increased transportation costs.
In Panel 8b, the routing choice is fixed as baseline.

increased weather risks. Rather, I fix

(0)_(0)\ ~¢
o _ [ T T
Toant =\~ | @)

where T(O)

v denotes the transportation costs estimated under the current climate. This

amounts to not allowing private rerouting responses of firms.

Figure 7c plots regional welfare changes in a climate change scenario with fixed
routing. In the absence of rerouting adaptation, aggregate welfare declines (-0.04 basis
points). The distribution of welfare losses changes drastically —including concentrated
losses in North America, the UK, and Japan. Aggregate port traffic, furthermore, de-
creases substantially (-4.4%, Figure 7d). Figure 8b shows that traffic change becomes
de-correlated from increased weather risk, a consequence of fixed routing. In the ab-
sence of rerouting as an adaptation mechanism to weather risk, domestic trade sub-
stitutes for international trade, and demand for port traffic decreases globally. Figures
E.4a and E.4b in Appendix E.4 show that the variance in welfare and traffic changes

increases without rerouting, along with larger welfare and traffic losses.
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7 INFRASTRUCTURE POLICY

This section studies the efficient allocation of scarce port investment under evolv-
ing port-level climate risk. I develop a sufficient-statistics, computationally tractable
framework that maps port capacity expansions into welfare changes and delivers a
ranking of investment priorities. I then quantify the misallocation that arises when in-
vestment decisions abstract from changing port-specific climate conditions and from

tirms’ private responses — first globally, and then within the EU27.

7.1 A SOCIAL SAVINGS SUFFICIENT STATISTIC FOR PORT CAPACITY

I adopt a social savings sufficient-statistics approach, originating in Fogel (1962). This
method entails expressing the elasticity of welfare to port capacity solely in terms of
observable reduced-form objects, allowing to recover first-order welfare changes with-
out solving the full general equilibrium of the model.*’” As in Allen et al. (2025), the
sufficient statistics I derive account for general equilibrium economic adjustments and
endogenous route choice.*® I characterize the social savings sufficient statistics for port

capacity as follows:

PROPOSITION 3. The elasticity of region-level welfare V,, with respect to port capacity Ky, is:

dlogV,,

— (w) (c) (8)
dlogK, = Pugny +‘BT;7T”/” _(:gn’/lﬂ +A3®P|ﬂﬂ’ + Az Z ®p’|nn’gp/,p , (23)

p'eP

(w) _ odlogw, (c) _ dlogen (=) BlogEP, ‘
where §np = Jlog K,’ 8np = 3log K, and 8y p = logk, K, and By, and Br are constants built

from economy-wide parameters. The elasticities of wages, factory-gate costs, and port traffic to

port capacity are the solution to the following set of equations:

Avw Apz Awc g 1(11,;1) bw
Az Azz Azc| |8 ;la’; = |bz |/ (24)
A Azc A g 1(1c,29 be

7 A full general equilibrium approach to evaluate the welfare effects of infrastructure improvements
would involve sequentially increasing the capacity of each of the 750 ports by 1%, and computing
welfare changes from baseline — as in Brancaccio et al. (2024). In my case, with a model calibrated at the
subnational level, such an exercise is computationally burdensome — the estimated running time of the
simulation is of 62 days.

8] depart from Allen et al. (2025) in several ways. First, I consider infrastructure improvements to
nodes (i.e., ports), rather than to links (e.g., rail segments). Second, I abstract from mode of transport
choice. Third, I explicitly allow for trade in intermediate inputs via production networks.
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where

{Awun AwE/ ch/ AEZU/ AEE/ AEC/ ACZUI AEC/ ACC/ bWI bE/ bc}

are constants built from equilibrium objects.

Proof. See Appendix D.6.

Although Proposition (3) characterizes local gains to port capacity improvements,
aggregation can flexibly yield global (or larger-scale) gains. Global welfare elasticity

to port capacity amounts to a welfare-weighted average of region-specific elasticities:

dlogV V,, dlog Vy, 25)

dlogK, &V dlogK,

Equation (23) highlights four channels that shape the welfare elasticity with respect
(w)

to port capacity. The income channel, ¢, ,, captures how a capacity shock at port
()
n’,p’

reflects the impact on factory-gate costs at every origin n’, weighted by the expenditure

p feeds through general equilibrium into local wages. The input cost channel, g

share 7/, of region n. The direct routing channel, A30,,,/, captures the fact that
increasing capacity at p lowers bilateral transport costs along any path that physically
traverses p — in other words, the “shortcut” offered by expanding the port. Finally, the
congestion spillover channel, A2}, © /|0 g;(a’E,;)ﬂ’ captures how capacity expansion at p
affects traffic &,/ system-wide, thereby altering congestion even on routes that do not
traverse p itself.

Importantly for policy analysis, the decomposition in Proposition (3) allows map-
ping welfare impacts of infrastructure improvements to observable quantities, at the
sole cost of solving a system of linear equations. Armed with observed quantities
{Ln,wn,Xnn/,nnn/,®p|nn/} and economy-wide parameters {c,«,,A1,A2, A3}, one can
estimate welfare payoffs from port expansion without solving a large-scale general
equilibrium model. These estimates account for first-order traffic congestion spillovers
within transportation networks while preserving the income and input cost chan-

nels.*

#In the exercises below, I use model-based counterfactual outputs at the sub-national level. How-
ever, welfare impacts of port improvements can also be estimated at a higher level of aggregation using
real data. Wages w,,, population L,, trade flows X,,,, and bilateral trade shares 7, are readily available
at the country level. The routing kernel ®,,,,, can be approximated using publicly available bilateral re-
sistance data and port traffic volumes — requiring only the assumption of a functional form for bilateral
transportation costs.
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7.2 INFRASTRUCTURE POLICY UNDER CLIMATE CHANGE

The social-savings sufficient-statistics approach provides a framework to identify which
nodes of the transportation network yield the highest welfare gains from marginal in-
vestment. I implement this approach using the general equilibrium results from Sec-
tion 6, comparing the baseline and the RCP8.5 climate scenarios. Figure 9a reports the
port-level global welfare elasticities for all 750 ports in the sample under the RCP8.5
scenario. On average, a 1% increase in port capacity raises global welfare by 0.02%.>°
This average conceals substantial heterogeneity across ports: the elasticity ranges from
0.004 at the 5% percentile to 0.06 at the 95t percentile, suggesting that uniform invest-
ment across ports would be highly inefficient.

How does the exposure of ports to future climate conditions alter these returns
to investment? In line with Balboni (2025), I show that accounting for environmen-
tal damage is essential for the efficient allocation of infrastructure spending. Figure
9b illustrates that neglecting future climate impacts (“policy myopia”) can redirect re-
sources toward ports with relatively low welfare payoffs. Under the RCP8.5 scenario,
welfare gains from expanding port capacity fall by 15% at the 5 percentile of the elas-
ticity distribution, while they rise by 12% at the 95t percentile. These results highlight
the importance of incorporating forward-looking climate considerations into infras-
tructure investment decisions.

To quantify the extent of potential misallocation in port capacity investments, I con-
struct an allocation rule in which the share of investment g, received by each port is
proportional to its global welfare elasticity under the RCP8.5 scenario.” This first-order
allocation rule ranks ports by their welfare-improving potential once future climate
risks and firms’ adaptation margins are accounted for. I then compare this benchmark
to alternative investment rules i, denoted g,g), using the following measure of misallo-
cation:

Misallocation(%) = %Z &y — g,(gi) |. (26)
P

This metric answers the question: “what share of total port investment would need to

be reallocated to match the climate-adjusted first-order allocation?” When comparing

S0For comparison, Brancaccio et al. (2024) estimate that a 1% increase in total U.S. port capacity raises
aggregate welfare by 0.5%.

51 « _ dlogV dlogV .
Formally, 8p = 3ok, / pr 3ogK, ’ evaluated under the RCP8.5 scenario.
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Figure 9: Welfare elasticity to port capacity

Notes: These panels plot the social savings sufficient statistics of port capacity under a RCP8.5 scenario.
In Panel 9a, I plot the port-level elasticity of welfare to port capacity. In Panel 9b, I plot the change in
port-level welfare elasticities from the baseline scenario to the RCP8.5 one. Welfare elasticities are com-
puted from the counterfactual outputs of Section 6, using the solution method described in Appendix
D.6. The color scales of both panels are truncated at the 5% and 95" percentiles.

the climate-aware first-order rule to a myopic one (based on present climate condi-
tions), the results imply that policy myopia would misallocate 2.3% of total global
port investment. For reference, a purely capacity-based rule misallocates 33.3%, while

an equal-share rule misallocates 30.5%.2

7.3 INVESTMENT INTO PORTS: THE CASE OF THE EU

I then illustrate how the social-savings sufficient-statistics framework can inform spa-
tial investment decisions and how accounting for future climate conditions affects
their allocation. I focus on the case of EU27 ports. Based on port-level surveys and
investment pipeline data, ESPO (2024) estimates that EU ports plan approximately
EUR 84 billion (around USD 93 billion) of investment by 2034. I construct a counter-
factual scenario in which this aggregate amount is allocated across EU ports using the
tirst-order allocation rule — computed for EU27 welfare gains — as the guiding crite-
rion. The analysis assesses how future climate conditions may alter the spatial pattern
of welfare-improving investment.

The first step is to derive the investment allocation rule. Using the social-savings
sufficient-statistics framework, I compute the shares of total investment implied by the
tirst-order allocation rule. The EU27 welfare elasticity of European ports is obtained

by aggregating Equation (23) over regions belonging to EU27 countries. Investment

2The “present-climate” rule allocates investment shares proportional to welfare elasticities com-
puted under current climate conditions, while the other two rules allocate based on current port ca-
pacity or equal weights across ports.
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Figure 10: Port investments and RCP8.5 — the EU case

Notes: These panels display changes in region-level welfare (Panel 10a) and port traffic (Panel 10b)
for the EU27 under a scenario of increased climate risks with port investment. Each panel compares an
equilibrium in which investment follows a myopic first-order rule (evaluated under baseline climate)
to one that accounts for future climate conditions at ports. All results are generated using the algorithm
in Appendix D.4. Sufficient statistics for investment allocation are computed from the counterfactual
outputs of Section 6, following the procedure in Appendix D.6. Color scales are truncated at the 1% and
99t percentiles.

shares are then constructed in proportion to each port’s welfare elasticity (Figure E.6a).
As in the global analysis, future climate conditions modify the relative ranking of ports
(Figure E.6b): welfare gains from additional port capacity decline by 2% at the 5
percentile and rise by 3% at the 95" percentile.

The second step is to translate the aggregate investment amount into port capacity
changes. To do so, I use data on port investments collected by the World Bank in low-
and middle-income countries (LMICs) and study the resulting increases in port capac-
ity at the recipient ports (World Bank, 2025). The dataset is described in Appendix
B.5. In a staggered difference-in-differences design (Appendix E.5.1), I estimate that
USD 1 billion of investment increases port capacity by 3,649 TEU-days on average —
equivalent to a 27% increase in unconditional port capacity in LMICs. This elasticity is
used to translate the allocated investments into implied capacity expansions for EU27
ports.

Finally, I compare two counterfactuals in which the same USD 93 billion is dis-
tributed across 110 EU27 ports according to (i) the first-order allocation rule computed

under baseline climate conditions (myopic), and (ii) the same rule computed under
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the RCP8.5 scenario (climate-aware). The misallocation metric indicates that ignor-
ing future climate conditions would misallocate 0.5% of total EU27 port investment,
resulting in aggregate welfare losses of —0.04 basis points (Figure 10a). Nearly all
EU27 ports experience a decline in traffic (Figure 10b), with total EU port traffic falling
by 1.6%. These findings highlight that future climate conditions can meaningfully
reshape the spatial pattern of welfare-improving investments. Incorporating climate-
adjusted welfare improvements into investment planning is therefore essential for en-

suring that long-term infrastructure policy remains both efficient and resilient.

8 (CONCLUSION

This paper investigates the impacts of climate-induced disruptions on global supply
chains, focusing on the role of disruptions to maritime transportation infrastructure.
Leveraging high-frequency data on firm-to-firm shipments and detailed cyclone activ-
ity, I provide empirical evidence on how extreme weather events affect port operations
and reshape trade routes. My findings show that, while firm-to-firm relationships are
only temporarily affected due to the mechanical effect of port shutdowns, routing de-
cisions across transportation networks adapt significantly and dampen the trade dis-
ruptions induced by weather at ports.

I further develop a quantitative model of spatial production networks incorporat-
ing endogenous transportation costs and congestion spillovers, offering a framework
to evaluate the broader economic implications of climate-induced transportation dis-
ruptions. The model reveals spatial and welfare implications of climate risks to trade
infrastructure for global trade, emphasizing the critical role of private adaptive strate-
gies in mitigating adverse effects.

Finally, I explore infrastructure policy in a context of climate change. Using a
sufficient-statistics approach, I develop a method to evaluate welfare gains from port
capacity improvements and show how they are affected by climate change at ports.
Failing to account for future environmental damage can lead to a misallocation of port
infrastructure investments.

These findings have clear policy relevance. Investments in climate-resilient trans-
portation networks can not only reduce the direct costs of disruptions but also allevi-

ate secondary congestion effects on unaffected regions. Policymakers should prioritize
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adaptive strategies that account for dynamic firm behaviors, transportation network
spillovers, and future climate at ports. While I only focus on maritime trade, future re-
search could extend this analysis by incorporating additional modes of transport and
leveraging the rich set of climate data currently available to study a wider array of ex-
treme weather events, offering a more comprehensive picture of global supply chain

vulnerability to climate risks affecting trade infrastructure.
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Appendix

A ANECDOTAL EVIDENCE

Marine Safety Information Bulletin

Commander MSIB Number: SKW-28-24

U.S. Coast Guard Date: Oct 7, 2024

Sector Key West Contact: LT Hailye Wilson

100 Trumbo Road Phone: (305) 292-8768

Key West, FL 33040-6655 Email: SKW Waterways@uscg.mil

U.S. COAST GUARD SECTOR KEY WEST PORT CONDITION ZULU

On October 8, 2024, at 0600 (6:00 AM), the Captain of the Port will set Port Condition (PORTCON) ZULU for the Port of Key West.
The shift is based on the projected arrival of sustained gale force winds (greater than 34 knots/39mph) associated with Hurricane
Milton. The table below summarizes COTP requirements for PORTCON Zulu in accordance with 33 CFR 165.707:

Hours
Prior to
Gales

Port

Condition Requirements (annotated from 33 CFR 165.707)

o Oceangoing vessels greater than 300 gross tons (GT) must make plans to depart no later than

72 Whiskey the setting of Port Condition Yankee unless authorized by the COTP. Vessels intending to
remain in port must contact the COTP prior to setting PORTCON X-Ray.

o Vessels greater than 300 GT without an approval to remain in port must depart prior to the
setting of PORTCON Yankee.

48 X-Ray o All vessels, regulated facilities, and waterfront facilities must ensure that potential flying
debris is removed or secured. HAZMAT/pollution hazards must be secured in a safe manner
away from waterfront areas.

e The port is closed to all inbound vessel traffic. All vessels greater than 300 GT must have

s Yankee departed the port, unless authorized by the COTP.
12 Zulu o The port is closed to all vessel traffic except as specifically authorized by the COTP.
o Regulated facilities must cease all cargo operations, including bunkering and lightering.
Sﬁ)f::,s Four o The port will be re-opened only after satisfactory assessments of the waterways, including
Passage (All Clear) critical aids to navigation verifications, have been conducted.

Mariners should be aware that no “safe havens” exist within the Florida Keys for vessels to safely survive hurricane force winds or
storm surges without creating a threat to the safety of the port and public welfare. Owners/operators of vessels greater than 300 GT
desiring to remain in port throughout hurricane season who have not already submitted heavy weather plans to the COTP for review
should be prepared to depart no later than the setting of PORTCON Yankee. Remain in Port C| ‘hecklists are available for review on the
Sector Key West HOMEPORT website: https:/homeport.uscg.mil/port-directory/key-west. Regulated facilities are reminded to
review and update their heavy weather response plans to safely weather any storm that may approach the Florida Keys.

Mariners navigating through the Islamorada Snake Creek Draw Bridge are reminded that the bridge may not operate on normally
published schedules as early as 36 hours prior to forecasted storm’s arrival. The bridge will not open for maritime traffic upon arrival
of gale force winds (34 knots or higher) or following a mandatory Monroe County evacuation order.

The official PORTCON and associated Marine Safety Information Bulletin (MSIB) will be set on Sector Key West’s Homeport
website. As weather conditions may change rapidly, mariners are encouraged to monitor the National Weather Service’s forecasts and
observations at https:/www.weather.gov/key or on NOAA weather radios. For questions or additional information, call Coast Guard
Sector Key West at (305) 292-8727 or email SKW@uscg.mil.

Sincerely,

1.D
Captain, U. S. Coast Guard
Captain of the Port

This Marine Safety Information Bulletin has been issued for public information and notification purposes.

Figure A.1: Example of port condition ZULU (US)

Notes: This document is the Marine Safety Information Bulletin issued on October 8, 2024, by the US
Coast Guards of Port Key West (Florida), before the landfall of Hurricane Milton.
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B DATA

In this appendix, I report all the data sources, and provide extensive details about data con-
tents, manipulation, and summary statistics. Table B.1 provides a summary of all data used in

the analysis.

Table B.1: Data sources and time coverage

Data type/variable Time coverage Source

Bills of lading (Brazil) 2014-2023 S&P Panjiva

Global port-level traffic 2019-2023 IMF PortWatch

Port capacity 2019-2023 IMF PortWatch

Tropical cyclone tracks 2014-2023 IBTrACS (Knapp et al., 2010)
Tropical cyclone climate 1980-2015/2025-2050 STORM (Bloemendaal et al., 2020a,b)
Regions - GAUL1

Distances (land) - Great-circle distance

Distances (sea) - Eurostat SeaRoute

Population 2012-2020 Rossi-Hansberg and Zhang (2025)
GDP per capita (2017 PPP) 2012-2020 Rossi-Hansberg and Zhang (2025)
Nightlights 2015 Li et al. (2020)

Historical population 1950 HYDE 3.3 (Klein Goldewijk, 2024)
Terrain Ruggedness Index - Amatulli et al. (2018)

PPI Wold Bank Port Investments  2019-2023 World Bank (2025)

Notes: This table reports all the data sources used in the analysis, by data type/variable. Appendices
B.1 to B.5 provide additional information.

B.1 BILL OF LADING DATA — BRAZIL (2014-2023)

Source and coverage. I use firm-to-firm bills of lading assembled by S&P Panjiva for all mar-
itime import transactions recorded as entering a Brazilian port between June 2014 and De-
cember 2023. The raw data contains shipment identifiers (panjivaRecordId), the date the
shipment entered the first domestic port (shpmtDate), company names for the consignee/im-
porter and shipper/exporter (conName, shpName), party address fields (street, city, state/re-
gion, postal code, country), party type (shpType, conType: Real Cargo Owner vs. NVO/For-
warder), maritime ports of lading / origin and unlading/destination (names and UNLOCODEs),
transport mode, indicators for containerization, and physical/value measures (TEU volume,
gross weight in kg, USD value).”® The empirical analysis focuses on maritime shipments only;

if non-maritime records are present in the extract, they are dropped.

Defining geocoded establishments (firms). Empty strings in Panjiva address fields are treated

>The data also contains Panjiva-assigned establishment identifiers for the consignee and shipper
(conPanjivald, shpPanjivald), but these are prone to errors. E.g., small variations in street names
can lead to wrongly-assigned separate establishment identifiers. I address this issue by constructing
new establishment identifiers, based on (cleaned) company names and addresses.
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as missing. For both sides of the transaction I build full-address tokens by concatenating the
available street, city, state/region, postal code, and country fields. These tokens are used for
geocoding and as intermediate keys to define establishments. Company names are standard-
ized prior to consolidation: I transliterate non-Latin scripts to Latin and then to ASCII, har-
monize special characters, and remove legal-form affixes using a comprehensive cross-walk
of entity-type abbreviations. The resulting sanitized parent names are then passed through a
generic string-cleaning routine.

I geocode the full addresses via the ArcGIS service (through t idygeocoder). Minimum
information for geolocalization is a city or postal code; street addresses are not required. I de-
fine a firm as the set of co-located establishments belonging to the same (cleaned) parent name.
Concretely, within each parent, I cluster all geocoded points using single-linkage hierarchical
clustering with a 10km cutoff and assign a unique establishment identifier to each cluster (con-
structed from the parent name and the cluster centroid). I then overlay cluster centroids onto
GAULI1 polygons to assign a unique GAULLI location identifier to each buyer and supplier.
Observations without a city/postal code or without a successful GAUL1 assignment are ex-

cluded.

Defining geocoded ports. I parse Panjiva’s port names and countries, normalize them via the
same transliteration/ ASCII pipeline used for firm names, and remove unknown UNLOCODEs.
For a limited set of ports with commonly used variants, I apply targeted name corrections (e.g.,
major Ukrainian, Chinese, and North African ports). I then construct port address strings (UN-
LOCODE, cleaned name, country) and geocode them via ArcGIS to obtain coordinates. When
multiple geometries are observed under the same UNLOCODE, I retain only UNLOCODEs
mapping to a single unique geometry. Finally, to facilitate linkage with global port-call data,
I match cleaned port names within country to IMF PortWatch ports using fuzzy matching
(Jaro—Winkler). I keep exact post-cleaning matches and store the PortWatch identifier for those

ports.

Useful identifiers. I construct a set of unit identifiers used throughout the analysis. Let b de-
note a Brazilian buyer establishment and s a foreign supplier establishment. The buyer—supplier
establishment pair is {b,s}. Each shipment lists a port of lading p, and a port of unlading p4,
which define a sea route. The identifiers are:

* BS.establishment.id: buyer-supplier establishment pair;

e route.id: route (p,,p4);
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* BS.route.id: buyer-supplier establishment pair x route (po, ps).

Calendar time is built from shipment dates by constructing a complete daily grid between the
first and last observed shipment dates and then indexing months by their first day (t ime . ym).

These normalized indices are merged back to shipments.

Aggregation and sample restrictions. I exclude records with missing parent party identi-
fiers (conPanjivald or shpPanjivald), with poorly geocoded establishments, or transit-
ing through poorly geocoded ports. I keep only shipments where (i) both parties are labeled
as Real Cargo Owner (i.e., I exclude NVO/Forwarder on either side), and (ii) the buyer geocodes
to Brazil and the supplier does not geocode to Brazil.

I'build two main aggregated datasets, at the BS.establishment . id (relationship) level,
and at the BS. route. id (relationship-route) level. For each relationship (relationship-route)
identifier, | aggregate shipment quantities and values at the monthly level. I compute the sum
of USD value, gross weight (kg), and TEU volume, the number of distinct shipments, and
the number of containerized shipments. I finally drop infrequent relationships (relationship-
routes), by keeping only BS.establishment.id (BS.route.id) identifiers that trade at
least two months within the sample.

Table B.2 reports the effect of the data cleaning procedure on firm- and relationship-related
variables. Table B.3 focuses on ports and routes. Table B.4 presents summary statistics on
firm-to-firm trade when infrequent relationships are removed, while Table B.5 presents sum-

mary statistics on firm-to-firm trade when infrequent relationships or relationships-routes are

removed.
Table B.2: Data Cleaning - Firms and Relationships
Desc. Num. Shipments ~ Num. Importers ~Num. Exporters ~ Num. Rel.

Full Sample

(1) Raw Panjiva 9017154 44556 37973 185708

(2)  Drop missing parent company ID 8950897 44509 37868 185355

(3)  Drop poorly geolocalized firms 2205290 27136 31537 126811

(4) Drop poorly reported ports 2204392 27133 31526 126754

(5) Keep Brazilian imp., foreign exp. 2197635 26876 31027 125636

(6) Drop NVO/forwarders 1039012 17692 23291 73551
Estimation Sample

(7)  Drop infrequent rel. 994069 10787 13813 38665

(8) Drop infrequent rel.-routes 938570 9748 12500 33304
Note: This table reports the effect of the data cleaning procedure on firm-related variables. Firms refer to ge-

olocalized establishments. "Num. Shipments” refers to the number of distinct shipments, as identified by the bill of
lading ID. “Num. Importers” refers to the number of establishments importing goods. "Num. Exporters” refers to
the number of establishments exporting goods. “Num. Rel.” refers to the number of trading establishment pairs.
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Table B.3: Data Cleaning - Maritime Ports and Routes

Desc. Num. Exit Ports ~ Num. Entry Ports ~Num. Routes  Num. Rel.-Routes

Full Sample

(1)  Raw Panjiva 1005 52 5877 576861

(2)  Drop missing parent company ID 963 52 5430 572937

(3)  Drop poorly geolocalized firms 483 44 2011 242377

(4)  Drop poorly reported ports 474 43 1970 242005

(5)  Keep Brazilian imp., foreign exp. 467 43 1950 240440

(6) Drop NVO/forwarders 442 42 1822 126684
Estimation Sample

(7)  Drop infrequent rel. 366 37 1493 91046

(8)  Drop infrequent rel.-routes 247 35 1000 50932
Note: This table reports the effect of the data cleaning procedure on route-related variables. Routes refer to port of

exit-port of entry pairs. “Num. Exit Ports” refers to the number of port of lading, as identified by the UN/LOCODE.
“Num. Entry Ports” refers to the number of port of unlading, as identified by UN/LOCODE. “"Num. Routes” refers to the
number of observed port pairs. "Num. Rel.Routes” refers to the number of importer-exporter-route triplets.

Table B.4: Summary Statistics - Relationship Sample

Desc. Mean 25%  50%  75%  90%  95%

Per Buyer - Month
Num. transactions  6.20 1.00 2.00 4.00 10.00 19.00
Num. suppliers 1.71 1.00 1.00 2.00 3.00 4.00
Num. exit ports 1.73 1.00 1.00 200 3.00 5.00
Num. entry ports 1.13 1.00 1.00 1.00 1.00 2.00
Num. routes 1.78 1.00 1.00 2.00 3.00 5.00
Log weight (kg) 11.01 993 10.80 11.99 1322 14.13
Log volume (TEU) 1.58 069 139 248 353 423
Log value (USD) 1212 11.02 1194 13.06 1422 15.01

Per Supplier - Month
Num. transactions  5.90 1.00 200 4.00 10.00 18.00
Num. buyers 1.63 1.00 100 1.00 3.00 4.00
Num. exit ports 1.34 1.00 100 1.00 200 3.00
Num. entry ports ~ 1.28 1.00 1.00 1.00 200 3.00
Num. routes 1.55 1.00 100 200 3.00 4.00
Log weight (kg) 1072 973 1058 11.71 1294 13.81
Log volume (TEU) 148 069 139 230 337 4.06
Log value (USD) 12.15 11.06 12.00 13.11 1427 15.07

Per Relationship - Month
Num. transactions  3.62 1.00 1.00 2.00 5.00 10.00
Num. exit ports 1.15 1.00 1.00 1.00 2.00 2.00
Num. entry ports ~ 1.04 1.00 100 1.00 1.00 1.00
Num. routes 1.18 1.00 1.00 1.00 2.00 2.00
Log weight (kg) 1057 9.77 10.34 1146 1255 13.34
Log volume (TEU) 1.23 0.69 0.69 1.95 2.94 3.58
Log value (USD) 11.79 10.85 11.63 12.61 13.68 14.42

Note:  The table reports summary statistics of the relationship sam-

ple. “"Num. Shipments” refers to the number of distinct shipments,
as identified by the bill of lading ID. “"Num. exit ports” refers to the
number of ports of exit, as identified by the UN/LOCODE. "Num. en-
try ports” refers to the number of ports of entry, as identified by the
UN/LOCODE. "Num. routes” refers to the number of pairs or ports
of exit and entry. “Log weight (kg)” refers to the total weight of ship-
ments, in kilograms. “Log volume (TEU)” refers to the total volume of
shipments, in Twenty-foot Equivalent Units. “Log value (USD)” refers
to the total value of shipments, in current USD.
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Table B.5: Summary Statistics - Relationship-Route Sample

Desc. Mean 25%  50% 75%  90%  95%

Per Buyer - Month
Num. shipments 6.46 1.00 2.00 4.00 11.00 20.00
Num. suppliers 1.69 1.00 100 200 3.00 4.00
Num. exit ports 1.68 1.00 1.00 200 3.00 4.00
Num. entry ports 1.10 1.00 1.00 1.00 1.00 2.00
Num. routes 1.71 1.00 1.00 2.00 3.00 5.00
Log weight (kg) 11.02 993 10.81 12.00 13.22 14.10
Log volume (TEU) 1.61 0.69 1.39 2.48 3.53 4.26
Log value (USD) 12.13  11.02 1196 13.07 1424 15.04

Per Supplier - Month
Num. shipments 6.11 1.00 2.00 4.00 10.00 18.00
Num. buyers 1.60 1.00 100 1.00 3.00 4.00
Num. exit ports 1.29 1.00 1.00 1.00 200 3.00
Num. entry ports 1.25 1.00 1.00 1.00 2.00 3.00
Num. routes 1.49 1.00 1.00 1.00 2.00 3.00
Log weight (kg) 10.72  9.73 10.59 11.72 1294 13.80
Log volume (TEU)  1.50 0.69 1.39 2.30 3.40 4.09
Log value (USD) 12.16  11.07 12.01 13.13 1429 15.09

Per Relationship - Month
Num. shipments 3.82 1.00 1.00 3.00 6.00 10.00
Num. exit ports 114 1.00 100 1.00 1.00 2.00
Num. entry ports ~ 1.03 1.00 1.00 1.00 1.00 1.00
Num. routes 1.15 1.00 1.00 1.00 2.00 2.00
Log weight (kg) 1057 9.76 10.37 1148 1256 13.33
Log volume (TEU) 1.26 0.69 1.10 2.08 3.00 3.64
Log value (USD) 11.81 1085 11.64 12.64 13.72 1447

Note:  The table reports summary statistics of the relationship-route

sample. It contains only treated relationships. “"Num. Shipments”
refers to the number of distinct shipments, as identified by the bill of
lading ID. "Num. exit ports” refers to the number of ports of exit, as
identified by the UN/LOCODE. "Num. entry ports” refers to the num-
ber of ports of entry, as identified by the UN/LOCODE. "Num. routes”
refers to the number of pairs or ports of exit and entry. “Log weight
(kg)” refers to the total weight of shipments, in kilograms. “Log vol-
ume (TEU)” refers to the total volume of shipments, in Twenty-foot
Equivalent Units. “Log value (USD)” refers to the total value of ship-
ments, in current USD.
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B.2 GLOBAL PORT-LEVEL TRAFFIC (2019-2023)

Source and coverage. I use the IMF PortWatch daily data on port activity and estimated trade
flows for 1,666 global ports from 2019 to 2023. The data reports, at a daily x port level, counts
of port calls and estimated import/export trade flows (in metric tons) disaggregated by ship

).>* These indicators are derived from

type (container, dry bulk, general cargo, tanker, and ro-ro
raw AIS traces processed by the PortWatch team following the methodology in Arslanalp et al.
(2021).>> 1 link PortWatch ports to the Panjiva port universe using the fuzzy name matching
described in Appendix B.1, which yields a stable mapping between PortWatch port IDs and
UNLOCODEs. To avoid ambiguous joins, I retain only PortWatch IDs that map to a single
UNLOCODE. The resulting linked sample contains 621 ports that can be used jointly with the

Brazilian bill-of-lading data.

Construction of daily traffic measures. For each port-day (p,t), I compute (i) total vessel
calls, (ii) container vessel calls, (iii) total traffic in TEU, and (iv) container traffic in TEU. To
construct daily total vessel calls, I sum the PortWatch port-call counts across all ship types.
To construct TEU traffic estimates, I sum import/export series across all ship types within
port—day and rescale it by a factor of 1/10 so that the stored variables represent average TEU
units.® Container vessel calls and TEU traffic estimates are constructed using the same logic,
although they only account for container ships, and containerized import/export weights.
Unless noted, I use total daily TEU as the proxy for port traffic; container-specific TEU and
vessel-call measures are used for robustness and by-ship-type checks. When higher-frequency
noise is undesirable, I aggregate these series to the relevant time unit (e.g., week) by summa-

tion, as indicated in the empirical design.

Port capacity. I measure port capacity from PortWatch daily TEU flows. For each port, I
compute the 99" percentile of daily total TEU (imports + exports) over 2019-2023, and I use
this as the capacity proxy K,. Unless noted, I use a normalized capacity measure (capacity

divided by the global maximum).

4Container ships carry standardized containers, mostly containing manufactured goods. Dry bulk
carriers transport unpackaged commodities such as coal, iron ore, and grain in large holds. General
cargo vessels move breakbulk items — often on pallets or in crates — using multipurpose ships with
their own gear. Tankers carry liquid bulk — crude oil, refined products, chemicals, or liquefied gases —
in segregated tanks. Ro-ro ships carry wheeled cargo such as cars and trucks that roll on and off via
ramps.

Downloaded from IMF PortWatch. Estimates are based on AIS data via the United Nations Global
Platform; see Arslanalp et al. (2021) for details.

**Twenty-foot equivalent units carry on average 10 tons of goods.
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B.3 TROPICAL CYCLONE TRACKS (2014-2023)

Source and coverage. I use the International Best Track Archive for Climate Stewardship (IB-
TrACS) global archive (Knapp et al., 2010). IBTrACS provides a harmonized record of tropical
cyclones with 3-hourly observations and ~ 0.1° track coordinates. I extract all storms observed
between 2014 and 2023 within 200km of global coastlines (measured by the distance between
the coast, and the eye of the cyclone). The analysis centers on cyclones that affect ports. Oper-
ationally, I evaluate wind exposure at geocoded ports that export to Brazil (Appendix B.1) and
retain, for 2014-2023, the set of storms whose modeled wind fields intersect at least one port.
For descriptive figures (e.g., Figure 2a), I display cyclone footprints within 200km of global

coastlines to emphasize coastal exposure.

Wind fields and exposure surfaces. I use the St ormR package to handle tropical cyclone tracks
data. For each storm I compute gridded surfaces of (i) maximum sustained wind (MSW) and
(ii) an exposure index conditional on winds exceeding 18m/s (hours of exposure). The 18m/s
threshold (=~ 35 knots) aligns closely with the 34-knot operational threshold commonly used
for port closure conditions (e.g., condition ZULU in the US).

Port-level extraction and variables. For each port-storm pair, I extract cell means at the port’s
coordinates from the MSW and exposure rasters, yielding (i) the port’s expected sustained
wind in m/s and (ii) the storm-specific exposure index above 18m/s. I also record the first
observed timestamp of the storm, which serves as the shock time for this event to avoid antic-
ipation from port authorities/firms. Ports with missing raster values are set to zero exposure

for that storm.

Port-level shocks. The resulting dataset at the port x storm level is later merged to the Port-
Watch port data (Appendix B.2) at the daily level, and to the bill of lading data (Appendix B.1)
at the monthly level. These joins yield the port-level treatment indicators used in the empirical

analysis.
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Figure B.1: Wind speed profile of hurricane Harvey

Notes: This map shows the maximum sustained wind speed experienced by US counties during Hur-
ricane Harvey (23 August to 02 September 2017). The red dots represent the eye of the hurricane across
its lifespan (IBTrACS). Wind speed is modeled using the method of Willoughby et al. (2006), adjusted
for asymmetry using Chen (1994). Black dots indicate US ports that export to Brazil in the Brazilian bill
of lading data. Grey dots represent US ports that do not export to Brazil.
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Table B.6: Summary Statistics - Tropical Cyclones at Ports

Desc. Mean 10%  25%  50%  75%  90%

(a) Panjiva sample

Per Tropical Cyclone Event

Num. ports of lading 7.17 1.00 100 400 10.00 17.00
Windspeed (m/s) 25,61 1948 2095 2432 2876 33.59
Exposure - 18m/s (hours) 10.94 460 655 932 1356 19.63

Per Port - Year

Num. cyclones 1.62 1.00 1.00 1.00 2.00 3.00
Windspeed (m/s) 26.77 1951 21.76 2526 30.04 36.05
Exposure - 18m/s (hours) 11.75  3.88 6.42 9.89 1533 21.78

(b) Portwatch sample

Per Tropical Cyclone Event

Num. ports of lading 4.88 1.00 1.00 3.00 7.00 10.00
Windspeed (m/s) 26.37 1955 20.74 2523 29.75 34.60
Exposure - 18m/s (hours) 11.63 4.71 6.83 9.67 1456 20.71

Per Port - Year

Num. cyclones 1.61 1.00 1.00 1.00 2.00 3.00
Windspeed (m/s) 2691 1955 21.72 2551 30.03 36.34
Exposure - 18m/s (hours) 11.87  4.00 7.08  9.90 1533 2157

Note:  The table reports summary statistics for the exposure of ports to trop-

ical cyclones. Panel (a) reports statistics for ports recorded in the Brazilian bill
of lading data. Panel (b) reports statistics for ports recorded in IMF Portwatch
data. ”Per Tropical Cyclone Event: Num. ports of lading” refers to the num-
ber of ports exposed to at least 18m/s of wind speed, per cyclone event. “Per
Tropical Cyclone Event: Windspeed (m/s)” refers to the mean maximum sus-
tained wind speed experienced by ports, per cyclone event. “Per Tropical Cy-
clone Event: Exposure - 18m/s (hours)” refers to the mean exposure of ports,
measured in hours of exposition to at least 18m/s of wind speeds, per cyclone
event. “Per Port - Year: Num. cyclones” refers to the number of cyclones in
which the port experiences at least 18m/s of maximum sustained wind speed,
per port-year. “Per Port - Year: Windspeed (m/s)” refers to the mean maximum
sustained wind speed from tropical cyclones experienced by ports, per port -
year. "Per Port - Year: Exposure - 18m/s (hours)” refers to the mean exposure of
ports during tropical cyclones, measured in hours of exposition to at least 18m/s
of wind speeds, per port-year.
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B.4 TROPICAL CYCLONES CLIMATE - STORM

Source and coverage. I use the STORM tropical cyclone hazard dataset (Bloemendaal et al.,
2020a,b), which simulates 10,000 years of synthetic storm tracks to estimate wind hazards at
~ 10km resolution. In practice, I use the global-scale .tiff files derived by Russel (2022).>” The
data consists of gridded fixed return period rasters for (i) a present-day climate (1980-2015; here-
after baseline) and (ii) a future climate scenarios consistent with RCP8.5/SSP5 (2015-2050). The
RCP8.5 scenarios correspond to the climate simulations of several climate models: CMCC-
CM2-VHR4, CNRM-CM6-1-HR, EC-EARTH3P-HR, and HADGEM3-GC31-HM. For each
scenario, STORM provides the maximum sustained wind speed (m/s) associated with a set of

return periods R = {10,20,...,10,000} years.

Defining expected wind speed. For each grid cell ¢ and scenario s, I compute a simple ex-
pected (annual) windspeed proxy by weighting the return-period rasters by their annual prob-
ability:

. 1
wmdspeedés) =) ;V;,S}),

reR

where Vg(;) is the STORM raster of maximum sustained wind (m/s) for return period r. I

implement this by dividing each raster by its return period and summing across r € R; missing
cells are treated as zeros. For display and merging, I spatially aggregate the resulting surface
to ~ 2° resolution.

The baseline expected wind speed field windspeed”) is built from the STORM “constant”

(RCP8.5)

(present-day) raster. The RCP8.5 expected wind speed field windspeed is the mean of

the climate models. I define the change in tropical cyclone climate as the grid-cell difference

Awindspeed, = windspeedéRCPS'S) - windspeedéo),
reported in (Figure 2b). Figures B.2a and B.2b report the respective baseline and RCP8.5 ex-
pected wind speed fields.

Port-level exposure (climate). To link climate hazards to ports, I buffer each port by 50km
and extract the mean expected windspeed from the baseline and RCP8.5 rasters. I implement
this both for the Panjiva-linked ports and for the IMF PortWatch global port set, yielding port-

level measures of expected cyclone windspeed under baseline and future climates. Missing

57The data is available here.
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values in the baseline raster are set to zero before extraction; extraction uses area means over
the buffer. The baseline and RCP8.5 expected wind speeds are treated as port fundamentals in

both the estimation of transportation costs (Section 5.1), and the climate change counterfactuals

(Section 5.2).

Figure B.2: Present and future (RCP8.5) tropical cyclone climates

(a) Present-day (1980-2015)
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(b) RCP8.5 (2015-2050)
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Notes: This map reports expected wind speeds (m/s) induced by tropical cyclones, in the present-day
(Panel a) and the future RCP8.5 scenario (Panel b) of the STORM model.
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B.5 ADDITIONAL DATA

Distances. Land route distances are approximated by great-circle distances between GAUL1
centroids. In the model calibration, I retain centroid distances only for contiguous region
pairs identified via polygon contiguity (first-order neighbors). Shortest maritime distances
between ports are computed with the Eurostat SeaRoute program; I build a directed port-to-
port matrix with entries equal to the SeaRoute shortest-path length in kilometers, and zeros
for unfeasible routes. I create a binary assignment matrix linking each port to the GAUL1
unit that contains it, and I record the (own) distance from the port to its region centroid. The
full economy-wide distance matrix used in the model calibration stacks (i) the sparse region-
to-region block, (ii) the port-to-region block (linking ports to their own region), and (iii) the

maritime port-to-port block.

Population and GDP per capita (2012-2020). For fundamentals at the regional level, I use
the global 1° grid from Rossi-Hansberg and Zhang (2025). I compute each GAUL1 unit’s to-
tal population by rasterizing the gridded population field and summing over the polygon
(averaging the raw population across 2012-2020). Regional GDP per capita is obtained as the
population-weighted mean of the grid-cell GDP per capita (constant 2017 PPP, averaged across
2012-2020) over the GAULL1 polygon, using the population raster as weights; both population
and GDP-per-capita aggregates are normalized by their global maxima for use in calibration

and diagnostics.

Nightlights (2015). I use the data provided by Li et al. (2020). I aggregate the 2015 harmonized
VIIRS nightlight raster to the GAUL1 polygons (sum of radiance), divide by regional popula-
tion to obtain per-capita radiance, and normalize by the global maximum. These quantities are

not used for calibration but provide an external check on the spatial allocation of activity.

Historical population (1950). To proxy historical coastal population at port, I use the HYDE 3.3
global gridded population for year 1950 at 5-arc-minute resolution (Klein Goldewijk, 2024).
For each port p, I build a 100km radius buffer, and extract the sum of 1950 inhabitants within
the buffer. I construct a share of 1950 coastal population by normalizing this count over total

population around the 621 ports used in the estimation.

Terrain Ruggedness Index (TRI). To capture hinterland topography, I use the global Terrain
Ruggedness Index based on GMTED at 30-arc-second resolution (Amatulli et al., 2018). For
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each port, I form a 20km radius buffer and extract the mean TRI over raster cells that fall

within the buffer.

PPI World Bank - Ports (2019-2023). To recover a set of port investments, I use the World
Bank PPI project data on port investments. I use all Ports projects from the World Bank’s
Private Participation in Infrastructure (PPI) database for 2019-2023 (World Bank, 2025). The
data contains the port identifier, the investment year, and total committed investment (scaled
in billions of USD) for all port infrastructure projects in which the World Bank participated. For
ports with multiple projects in the same year, I sum investment amounts to obtain a portxyear

aggregate. I manually assign PortWatch IDs to recipient ports, by port names.
C ROBUSTNESS AND ALTERNATIVE SPECIFICATIONS

C.1 PORT-LEVEL DISRUPTIONS

Figure C.1: Port exposure to weak cyclones

(a) Port activity (b) Log vessel count (c) Log volume (TEU)

-15 -10 10 15 -15 -10

-5 0 5 -5 0 5 -5 0 5
Time to treatment (days) Time to treatment (days) Time to treatment (days)

Notes: These panels plot the effect of exposure to tropical cyclones on daily port-level outcomes, as
specified by Equation (1). The sample is constructed analogously to the one in Section 3.2, but treatment
is defined as exposure to wind speed between 9 and 18 m/s (weak cyclones), removing any port treated
by wind speed above 18 m/s. The outcome in Panel C.1a is a binary variable, taking value 1 if at least
one vessel entered the port in period t (port activity), 0 otherwise. The outcome in Panel C.1b is the
log number of vessels using the port in period ¢, conditioning on the port being active. The outcome of
Panel C.1c is the log volume TEU transiting through the port in period ¢, conditioning on the port being
active. Standard errors are clustered at the port level. The bars correspond to 95% confidence intervals.
Black dots are point estimates significant at the 5% level, gray squares are point estimates significant at
the 10% level, and empty dots are point estimates non-significant at the 10% level.
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Figure C.2: The impact of exposure to cyclones on port operations

Notes: These panels plot the effect of exposure to tropical cyclones on daily port-level outcomes, as
specified by Equation (1). The outcome of both panels is a binary variable, taking value 1 if at least one
vessel entered the port in period t (port activity), 0 otherwise. In Panel C.2a, I estimate Equation (1) by
splitting the treated group by the duration of exposure to at least 18 m/s: below and above 12 hours of
exposure. In Panel C.2b, I estimate Equation (1) using port-ship-type-specific outcomes: containerized
vs. other ships. Standard errors are clustered at the port level. The bars correspond to 95% confidence
intervals. Black dots are point estimates significant at the 5% level, gray squares are point estimates
significant at the 10% level, and empty dots are point estimates non-significant at the 10% level.
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C.2 ROUTE CHOICE
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Figure C.3: Port exposure to cyclones & route choice (first vs. subsequent treatments)

Notes: These panels plot the effect of port exposure to tropical cyclones on monthly firm-to-firm-route-
level outcomes, as specified by Equation (2). The treatment variable is interacted with two indicators
variable, taking value 1 if the treatment is respectively (i) the first treatment experienced by the rela-
tionship (b,s), or (ii) subsequent treatments. The outcome in Panel C.3a is a binary variable, taking the
value 1 if at least one shipment is observed for the trading pair through route r at month ¢ (active route),
and 0 otherwise. The outcome in Panel C.3b is the log total weight (kg) of shipments of the relation-
ship using route r at month ¢, conditioned on the relationship-route being active. Regressions include
relationship—month fixed effects, and control for time dummies interacted with relationship-routes’ pre-
treatment characteristics. Standard errors are clustered at the relationship level. The bars correspond
to 95% confidence intervals. Black dots are point estimates significant at the 5% level, gray squares are

point estimates significant at the 10% level, and empty dots are point estimates non-significant at the
10% level.
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Figure C.4: Port exposure to cyclones & route choice (by good type)

Notes: These panels plot the effect of port exposure to tropical cyclones on monthly firm-to-firm-route-
level outcomes, as specified by Equation (2). The treatment variable is interacted with two indicators
variables, taking value 1 if the relationship-route traded respectively (i) only containerized goods, or (ii)
at least one non-containerized good, in the 5-month period preceding the shock. The outcome in Panel
C.4a is a binary variable, taking the value 1 if at least one shipment is observed for the trading pair
through route r at month ¢ (active route), and 0 otherwise. The outcome in Panel C.4b is the log total
weight (kg) of shipments of the relationship using route r at month ¢, conditioned on the relationship-
route being active. Regressions include relationship—month fixed effects, and control for time dummies
interacted with relationship-routes’ pre-treatment characteristics. Standard errors are clustered at the
relationship level. The bars correspond to 95% confidence intervals. Black dots are point estimates
significant at the 5% level, gray squares are point estimates significant at the 10% level, and empty dots
are point estimates non-significant at the 10% level.
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C.3 FIRM-TO-FIRM DISRUPTIONS
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Figure C.5: Port exposure to cyclones & firm-to-firm relationship (first vs. subsequent
treatments

Notes: These panels plot the effect of port exposure to tropical cyclones on monthly firm-to-firm-level
outcomes, as specified by Equation (3). The outcome in Panel C.5a is a binary variable, taking the
value 1 if at least one shipment is observed for the trading pair at month ¢ (active relationship), and
0 otherwise. Relationship activity is conditioned on the entry of both the buyer and the supplier. The
outcome in Panel C.5b is the log total weight of shipments traded by the relationship, conditioning on
activity. Regressions include buyer—time and supplier—time fixed effects, and control for time dummies
interacted with relationships’ pre-treatment characteristics. Standard errors are clustered at the buyer
level. The bars correspond to 95% confidence intervals. Black dots are point estimates significant at

the 5% level, gray squares are point estimates significant at the 10% level, and empty dots are point
estimates non-significant at the 10% level.
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Figure C.6: Port exposure to cyclones & firm-to-firm relationship (by good type)

Notes: These Panels plot the effect of port exposure to tropical cyclones on monthly firm-to-firm-level
outcomes, as specified by Equation (3). The outcome in Panel C.6a is a binary variable, taking the
value 1 if at least one shipment is observed for the trading pair at month ¢ (active relationship), and
0 otherwise. Relationship activity is conditioned on the entry of both the buyer and the supplier. The
outcome in Panel C.6b is the log total weight of shipments traded by the relationship, conditioning on
activity. Regressions include buyer—time and supplier-time fixed effects, and control for time dummies
interacted with relationships’ pre-treatment characteristics. Standard errors are clustered at the buyer
level. The bars correspond to 95% confidence intervals. Black dots are point estimates significant at
the 5% level, gray squares are point estimates significant at the 10% level, and empty dots are point
estimates non-significant at the 10% level.
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D THEORY

D.1 PROOFS

Proof: Proposition 1. Denote by A;(¢,r) = C’ H'B’| [ H,‘f . the effective costs of
using input from supplier j in technique ¢, along route 7. Consider the probability that the
effective cost of supplier j € M,, available to i € M,, through route 7 is strictly lower than a

threshold A,

k=1 m=1

15 7
P(A(¢,r) <A) =P (Z(Z)) [T o It < A) —F(A).

Integrating F, over realizations of z and Lot Ep(r) e WE obtain that the number of poten-
tial suppliers that deliver effective cost weakly less than A through route r follows a Poisson

distribution with mean

Ajp = /O N [ /1 T /1 B (A)dE ), (6) - -de(r)M(O)] dF, (2)

|Br| |Pr|
= / [/ / [/ ((P) Hdrk L% H Ep(r)m < /\> anr(Cj)] dFy(y), (0) - dFy(,, (9)] Eayz S ldz

15|

oo oo [e0] (o] "Pr|
—H'Aéﬂdmm/ [/ /1 UO ﬂ(CjS“)dPn’(Cf)]Ht;(%mde(r)l(")“'de<r>M(9)] Gu £ ldu

m=1

— ayA ﬁdk[// /U ¢ CdFy(c;)

|Br| |Pr|
4 i~
- an//\’gc dek 17k H tp(f)m’
m=1

|Pr]
]'_‘[1 tp(r)mdpp(r)l (6) e de(r)M (6)] é's_g_lds
m=

(27)

where

i [T, R
C; —/0 c; an/<Cj) and tp(r)m—/l tp(r)mde(r)m(Q) (28)

The second equality follows when applying the transformation

|Br [P |
zZA/ (Hdrk 1,kHt )

while the third equality follows when applying the transformation u/c; = s. Therefore, num-
ber of potential suppliers along route r that deliver effective cost strictly greater than A is such
that:

—a /Agc (:H‘Brld ¢ \'Pr\t L

P(Aj(p,r) > A)=e M =e 1l In=afy (29)
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Consider now the cost distribution of firm i € M, with a supplier j € M, along route r. Using

the marginal cost of firm 7, one obtains

1—a

w) ci \"
P(ci(¢,r) >c)=P ( 0 (Tn(i)n(f)(r)z((]l))) > C)
;
=P ()Lj((p,r) > (anwﬁ_lc) “) (30)
¢ |B] [P |
=exp [— (an/ci (anwﬁ_l) ' | d;ki,rk 11?’7(5)"15].5)] .
=1 m=

Then the probability that firm i’s minimal cost from sourcing from n’ through route r is higher

than a threshold, P (c;(¢,7)mins > ¢) is as follows:

P(Ci((,b/r)min,r > C) =P <)\]‘((P,T’)min,y > (anwz_lc) i)

. NP (31)
=exp [—an/ca (anwﬁ‘l_ ) 145 n o ] .
k=1 m=1

Consider finally the minimum cost at which firm i can produce (sourcing from any supplier

through any route r € R), given realizations of a,:

P(Ci(¢/r)min,r€73 > C) = H P(Ci(¢/r)min,r > C)

reR
g 1 {15 —C Tr —¢
= Hexp —a,Cx (anwﬁ’ ) drk_l,rk tp(r)mén/ (32)
reR k=1 =l
=exp |— (anwz_ ) Zan’c_n’ Z dfk—l"k H tp(r)m cr
n’ rERn’n k=1 m=1
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which is Weibull distributed. It remains to characterize ¢, and ,, both moments of the respec-

tive marginal cost and trade cost distributions. Consider first

o) 5 |BV |PV
fond :/ cgd{l —exp [— (anwﬁ’1> ! <Zan/c'_,§ ) Hdr_k . H f_ > cc%] }
0 n

I’ER/k 1

H-|4
™
N———
=2
—
3
=
o
QU
—N
—_
|
x
=
S
|
=
=
——

|B/| P
_anwn <Zan/C, 2 nd;ki/’kn ;(r)m

reR, k=1 m=1

nn

E
§/
N———
2
S—
3
(e}
—N
|
S|
——

|Br| [P
— anwn (Zanrcn, Z Hdrk e H t *dil—e (33)
m=1

reR, k=1

3
—_

nn

reR, k=1
||

5, 7 .
- a”w” <Za”/c ! Z Hdrk 17k H EP( )m> /O v e Vo
(e-1)¢ 2 i '
oa— —— — —_
sl (e T [Tt T50,) ra-o.
n’ 1

re€R,, k=1 m=
The second equality follows from applying the transformation
. : By : [P 14
A= C - - —
nWy Zan/cn, Z Hdrk—lzrk H tp(r)m c=1u.
n' re€R,, k=1 m=1

The third equality follows from applying the transformation v = Ut

Moreover, f;(gr) follows immediately from its definition and the Pareto assumptions on its

distribution:

_ [T P
—/1 by, @1 —67V0m} (34)

Proof: Corollary 1. From the cost distribution of firm i € M, sourcing from route r, the number
of suppliers located in n and using route r available to firm 7 in region #’, such that i achieves

a cost below c is distributed Poisson with parameter

¢ |5y P
4 w _—
Pir = ApCe (an/w ) | | reo 1rk | | Cy)mcn ¢, (35)
k=1 m=1
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Moreover, from the cost distribution of firm i € M, sourcing from any route, the number of
suppliers available to firm i from any route, such that i achieves a cost below c is distributed

Poisson with parameter

2

(36)

il reR. k=1

¢ |B; | [P/ ]
pi = (an/wﬁ,_l) ' <Zaﬁ5 )y Hdr_k Tk H t_g )C

fin

The probability that a firm 7 in location n (able to deliver costs below c) supplies from location

n’ through route r is the ratio of p; , and p;:

g
: 1\ & lBr P, -
anCe (an’wlxl 1) H‘ | drkgl Tk H|m ll tp (f) ‘

Ty =
B, P, 4
(o) (St Ere, i T ) @)
87 PV —
ancngn‘ |drk§1 rkHJn 1 p@’)

B: Pr
Zn a7y ZreRnn Hl | d”kél Tk H‘m |1 tP :

Note that the probability of sourcing from r is the same for any firm in n’. Since there are a
continuum of firms in #’, 7; , is also the bilateral trade share of route r in the total absorption of

goods of destination n’, denoted 7,y ,.

Proof: Corollary 2

. (38)

where

(i () (F2))
reR k m=1 lpP(")m + g

11}1/

Eatiley

D.2 CLOSING THE MODEL

Labor market clearing: Labor demand for a firm i in location # is given by I; = (1 — a)y;c;/ wy.

Plugging this condition into the labor market clearing gives:

. wyLy )
L — Ldi = :/ c.di. 40
" /ieMn idi = ieMnyzcl i (40)
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Good market clearing:
Yi=Lugi + ) / Ta(yn( i, Xij = xj x {i =i} (41)
n' JEM,,

Multiplying both sides by marginal costs ¢; and aggregating over firms in M,;:

/ieMnCiyidi: b ieMnCiqidi  Jien, !;/j'EM,,/ Tu(in( (6 X Hi=1"})dj| di.  (42)

(1) Supply (2) Final good demand

(3) Intermediate input demand

Term (1) simplifies using the labor market clearing condition, [;_ wm, Ciyidi = wuLy/ (1—w).
Term (2) simplifies as follows: With isoelastic preferences and monopolistic competition, house-
holds in region n demand q; = g.py;p; *, where p; = ¢i7%7. Realizing that g, = (wy + 1)/ pn,

where w), is the wage rate and I1,, is the per-capita profits of firms in n rebated to labor, implies:

-
L aidi—L ,)pe ! [~ / 1-0g;
n/ieMnClql 1 n(wn+ n)pn <0._1> ieMnCl !

2\ <
= Ly (wy, + I1,) </ p}—vdi> <(7> / c}—vdi
ieM, c—1 ieM, (43)
-1 -1
= Ly (w, +I1,) ( 7 > (/ c}"dz') / c}’”di
c—1 ieM, ieM,

= Ly(wy, +11,)5 L.

[Note: term (2) simplifies also easily when considering that g,p, = [,

ieM, oc;q;di, where 0 =

o/(c—1),and q,p, = w, + I1,.] It remains to characterize per-capita profit rebated to house-

holds in region 1. Note that firms only gain profits from selling final goods to local households:
PI‘Oﬁti = piqiLn - CiqiLn‘ (44)
Therefore, total profit per capita (aggregating over all firms in M,,) yields:

11, = L;l e Ln(piqi — Ciqi)di

= (Ocigi — cigi)di

ieM,
— (-1 / ciqidi (45)
ieEM,
=(0— 1)(771‘171%

1
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Solving for per-capita profits yields IT, = ;2 term (2) simplifies to:

L, ciqidi =L, <wn + il > g1
ieM, c—1 (46)

=L,w,.

(1— )y] i

Term (3) simplifies as follows: Firms demand x; = - o
1 1 J

units of intermediate inputs. This

implies:

/iEM” Ci (;/ngn, Tnn/(x]' X 1{1 = 1*})d]) di = [X/eMn (;/jeMn, 1{1 = 1*}]/]C]d]> di

= lXE/eM , 1{1* € Mn}y]C]d]

(47)
= aZnnn// y]c]d]
w /L /
=a) Ty
n
Putting terms (1), (2) and (3) together yields the following system for region-level wages:
WyLy =Y 7yt Ly (48)
n/

Finally, to obtain traffic, we recover the value of bilateral flows (i.e. the level of expenditures

from firms in n’ to firms in n):

X —/ / CiTuw (xj X 1{i =i"})djdi
eEM, JjeM,,

_ 160 — iVyedidi

S, o, 1= i

= 1{i* € M, }yicidj 49
“/jeMn/ {i tyjeidj (49)

= KTT, cidj
/je yjciaj

D.3 GENERAL EQUILIBRIUM: DEFINITION

Given a geography G = {N,P,L, M, A, D,K,¥} and a set of model parameters {c,a,&,A1,A2,A3},
an equilibrium is defined as a distribution of wages and factory-gate prices {wy, ¢, }nen, such

that:

1. Given the equilibrium transportation network &,y € {& }1 reaupxnup, (i) consumers
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maximize utility; (ii) firms choose the techniques and the routes that minimize costs,

and markups that maximize profits; and (iii) market clears.*®

2. Given the transportation network fundamentals {D, K} an equilibrium prices, the equi-
librium transportation network & € {6} repupxaup is determined by the equilib-

rium levels of traffic {&,}.

This leads the equilibrium to be characterized by the following set of equations:*

1-— .
Waly = — EY Xy (wage bill)
n/
0l T .
Tl = — g””_ : (bilateral trade shares)
Zﬁ i _ﬁ Tﬁn’

) (transportation costs)
[(I— A)_l}o(ff) otherwise

4, 5, if I'ePp
A= [o], bij = (transportation network)
dﬁ,‘j otherwise

_ mhaghs P

l—llé = el);}, {l_,‘: R v (link- and port-level costs)

-
Ep=6pp 22 (rnprpnlrr;},) Xpw  (link- and port-level traffic)

n n

Wy Ln/

Xy = QTTypy 1

(bilateral trade)

D.4 GENERAL EQUILIBRIUM: NUMERICAL ALGORITHM

Given a geography G = {N,P, L, M, A,D,K,¥} and a set of model parameters {c,a,&,A1,A2,A3},

the following algorithm solves for the equilibrium of the economy:

1. Initialize endogenous variables:

%Formally, the economy admits ports as regions. However, I assume that ports have a 0 measure
of households and firms, such that they do not consume or produce. It results that equilibrium prices
have dimension |A/|, while the transportation network has dimensions (| U P|)2.

*Up to a numeraire: w; = 1.
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(@) {wn}tnen (Wages)
(b) {¢x}nen (factory-gate cost indices)
(¢) {7Tun } e (bilateral trade shares)
(d) {Ep}pep (port traffic)
2. Outer-loop — While distanceyages > tol or distance,sfic > tol:
(a) Based on distances €, port capacity K, and traffic £,, update A (transportation
network)
(b) Based on A, update transportation costs 1 (transportation costs)
(c) Inner-loop (factory-gate costs) — While distancecosts > tol:

i. Based on transportation costs 1,,, region-level productivity a,, factory-gate
costs indices ¢,, and wages w,, update ¢, (factory-cost indices)®°

ii. Compute distancecosts =Y, [(En)’f — (En)’fH] , with i = iteration (inner-loop)

(d) Based on transportation costs 1,,/, region-level productivity a,, factory-gate costs

indices ¢,,, and wages w,, update 7, (bilateral trade shares)

(e) Based on bilateral trade shares 7, and wages bills w,L,, update X, (bilateral

trade)

(f) Based on the transportation network A and bilateral trade X, , compute &, (port-

level traffic)

(g) Based on bilateral trade X,,,/, and households L,, compute wages w,, (wage bills), up
to a normalization w; =1

(h) Compute distanceyages = Y, [(wn ) — (wn)i‘mﬂ}z and

—

, — i - 2 L o
distanceyafic = ¥ [(Ep) o — (Ep)"*1]7, with iou = iteration (outer loop)

In practice, I dampen each wage and traffic iteration using a dampening factor of 0.1, and use

the "daarem’ R package to optimize the resolution of the fixed point.

%Note that transportation costs used in factory-gate cost indices and bilateral trade shares do not
have the same dimension as transportation costs used for traffic. This is because ports have a measure
0 of labor, and therefore would not impact bilateral trade shares and costs indices. I use only the sub-
matrix of 7;; with dimensions |N| x |N].
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D.5 WELFARE

Proof. Proposition 2. Define welfare in location 4 as:

L 11
Vv, = n(wn+ n)l

(fzeMn ]91 adz) -

L,w,o
= (50)

1
<fi€M,, (&Ci)liadl) T—o
L,w,

(M, [ =odEi(c)) ™

It remains to characterize [ ¢!~7dF;(c):

e e o (ot i )

rER 1 =

(51)

The third equality follows from applying the transformation a,w® ! (Zn/ anféfrl;,g ) ‘o=
The fourth equality follows from applying the transformation v = u%. The sixth equality fol-
lows from the definition of the Gamma function I'(z f t#~le~tdt. Therefore, assuming a

unit measure of firms in each region, welfare writes:

aq0—1
3
. —1
Vyy = Lty [anw‘,"ll (X:an/c‘n,ng,S) ] r <1 - ‘X(UC )> (52)
n/
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D.6 WELFARE ELASTICITY

Proof. Proposition 3. Rewrite the region-level welfare function as
_ PwPr
Vﬂ - L?’lwﬂ ,7;1 Ci’ll (53)

where C, = a{” VT (1 - @), Bo=1+(x—1)(c —1), and B = %(0’ — 1) are constants.
Recalling that 77,,/,, = anréfrn_/g / Tn, log-differentiating yields:

dlogV, dlogw, dlogc,y . dlogT,,
= m = - 4
dlogK, Pu dlogK, +,BT;7T7171 Calong dlogK, ©4)
—— —— ——
(1) (2) ©)
(1) - Wage elasticity §; alogw” . Recall the definition of the wage bill:
1— 1L
Waly =Y Xy With Xy = a7y 20 (55)
x = 11—«
Log-differentiating with respect to log K, yields:
dlogw, 1—u dlogm,, dlogw,
Wnkn "9logK, « ;X , [ dlogK, dlogK, (56)
It remains to obtain the derivative of trade shares over log K;,. Log-differentiating 71,
dlog 7ty dloge,  dlogT,, dlogcy dlog Ty
= - in' | — - 57
dlogK, dlogK, = dlogkK, ; Einn g&log K, ¢ dlogK, ©7)

Plugging into the wage derivative yields:

dlogw 1—«n
& - = I ann’ -

dlogc, dlogT, dlogc; = dlog Ty dlogw,,
g[ g 8 ]+€E”ﬁn’[ g 8 ] 8

dlogK, awyL, 7 dlogK, = dlogK, dlogK,  dlogK, dlogK,
(58)
(2) - Factory-gate cost elastzczty al . Recall the definition of factory-gate costs:
c'_g = anwn 57-“ I'l—«), where T,= Zuﬁc'gcrﬁ_f. (59)
7
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Log-differentiating with respect to log K, yields:

_alogén — (- )alogwn galogﬁl
dlogK, dlogK, = ¢ dlogK,

—(a—1) dlogw, ZT[ dlogc,y  dlogT,, (60)
B alogK o dlogK, = dlogK,
(3) - Bilateral transportation costs elasticity BOgT” », Define B = (I — A)~L. By definition, log 7y =
—z llogByy, VI #1' and log Ty = 0,VI = I'. Differentiating B with respect to logK,, yields:
oB oA
=B(———+|B 1
dlogK, <810gl<p> ’ (61)
or, element-wise:
aBll’ aA,]
= B B. 2
dlogK, Zl:; t (along it (62)
Realizing that dA;;/dlog K, = 0,Vj & P, this yields:
alogB”/ 1 ( 8(51] >
= B =——— | Bjy. (63)
dlogK, By ZI:];J ! dlogK, ]
With the parametrization d;y = d”,gtl, , and tl, ¢ = :;)zKlAﬁ wwi z if I’ € P, one obtains:
851']' alogE]
=6 ( As1,_ ——o71 ), 4
dlogK, i <A3 I=F +AzaloggK,g) (64)
Plugging this expression into dlog B;;/dlog K, yields:
810gB”/ . along 1 1 alOng/
ologK, As + AZalong B ;BIZ(SZPBPZ/ + By p’GE'Pp A2 dlogK, ;BllélPpr/l,
65
B <)\ A along> 1 (BA), B, + E ()\ 810g3p1> 1 (BA),,/B (65)
3 2along By Pl = 2 dlogK, ) By i
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Foralll # p/, (BA);y = By, since B =

I — A)~!, such that (BA);,y = B — I. Therefore,
p

dlogTy  10logByy
ologK, oz dlogK,
_ _&Blp pl! B & Blp'Bp’l’ alOng/
C Bll’ (: p’G’P Bll’ 8long (66)
A3 Ay dlogE,
:—7@) n — = Z @ N =1
z pl z i r'l iong
(4)
. . BZpB 1
where I use the identity ©,; = B”/’” .
(4) - Traffic elastzczty al . Traffic writes:
= 1\ ¢
By =YY OpuwXuw, where O, = (Tnp/’(p T, nn,) ) (67)
n n
Log-differentiating with respect to K, yields:
dlog =, ZZ ) [0108O© 1 9log X, (68)
dlogK, ””/ dlogK, dlogK, |’
where w,(qi,,) = Oy Xy / By . 1 first derive
0log® _ Olog Ty  dlog Ty dlog T,
dlogK, N dlogK, dlogK, dlogK,
dlogE; (69)
= /\3 ®P|ﬂp’ + @mp/n/ - G)p‘i’li’l,] + Z: Az [Gﬁ\np’ —|— ®p|p I’l’ - @ﬁ‘nnl W.
peP 4
The elasticity of trade volumes to port capacity is
dlog X,,,,  dlogm,, dlogw,
dlogK, N dlogK, dlogK, 70
_ ¢ dloge,  dlog T,y Y alogc'n dlog T dlogw,, 70
B dlogK, = dlogK, — along dlogK, dlogK,
The first term writes:
dlogc,  dlog T,y dlogc, dlogZ;
- - )L ’ )L A a—— 71
¢ [along dlogK, éal ogK, T AsOppun + A2 Z ®p‘”” logK, @1
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The second term writes:

dlogc; dlog Ty
_erﬁn/ _g § &

B alogcn 8log’r,m/
dlogK, _Calong _Czﬁ: " 9log +CZ T dlog

dlogcj dlogE;
= (’:Z?Tﬁn/aloggK’; - Znﬁn’ A3®p|ﬁn’ + AZ ; ®ﬁ|ﬁn’ 57
i l P

dlogK,
(72)
Therefore, the elasticity of trade volumes to port capacity writes
dlog X, dlogcy alog ._,p alog Cr
aloglél: :_éal gK +A3®p|nn’+A2 Z®p\nn’ éz fin' ng
ol ol 73)
0gEp Og Wy
— in' | A3O i + A 5liin!
Zﬁ:nnn 3®p\nn + Zﬁ;;@pnn along along

Using the previous expression in the elasticity of port traffic to port capacity therefore yields

aIOng/ ) alogup
along :;;wnn, )\3 [@P‘Tl}?’ + ®p\p/n’ — @mnn/} -+ ﬁ;}/\z [®ﬁ|nr)/ + ®P‘P n — @Mnn/] alogK
alogc 810gup dlogcj
+ 22 Wy ( gKn +A3®p\nn’ + A2 Z ®p\nn CZ TCiin! alOgK
n n p
dlog&; dlogw,,
_ Xﬁ:ﬂﬁnl /\3®p‘ﬁnl + Ay ﬁezp @mﬁnl aIOng a]Ong
(74)
or, in concise form:
dlog&, dlogE; dlogc;  dlogcy dlogw,
dlogK, ;;w””' Asbupwp 42 Z By "7 9logK, 6 [Z T dlogK, dlogK,| = dlogk,
(75)
where
Bupp = Oppuy + Oplyrw — LTy, and W) = @y Xt /B, (76)
n

Solving the system. Altogether, steps (1), (2), (3), and (4) form a system of N x N x P equations
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that reads:

dlogw, 1-a dlogc, A3 alog__,p
Wnln "dlogK,  « ZX[ ¢ dlogk, ¢ Oplm Z Orim' 316 ogK,
dlogcy )Lg, dlogZ, |  dlogw,
m Czﬁ:nﬁ", dlogK, ? plan’ pzelp Pl 9log K, dlogK,
(77)
dlogE, () dlogZ; dlogc;  dlogé, dlogw,,
= / A 10l )\ A Vgl 55— —
dlogK, ;;w”” AsBupatp 2;5;) PP 9logK, ¢ Zﬁ:along dlogK, dlogK,
(78)
dlogcy, dlogwy, dloge,y Az A2 dlog =,
— = — — ’ —_ Iy — = @ Nuln =", 79
dlogK, ( )along IX;TCHH dlogK, ¢ pinn = & p;’P p'ln'n dlogK 7)
I represent the system in matrix form. Define the vector of unknown elasticities
x=[8w gz &'
Starting from the factory cost block. The sub-system reads:
Acwgw + AcEgE + Accgc = bc: (80)
with
Az ) T
Acw = (DC - 1)HN, ACE = ?Z , ACC = HN —ull ,
and
0()\3 (1)
where I define
1) NxNxP NxN BupBpw
zZW=[(Tee) 1y .. (I66p)T1ly], OcR ;@ eRVN, @, = ——",
nn'
and Z’(,l) = (I1® @,)T1y denotes the p!" column of Z(1).
The wage block sub-system reads:
Awwgw + AwE.gE + chgc = by (81)
with
. 1—a (2) 1—a .
Ay =diag(w ® L) — wE = A AR we = —(;‘T [diag(X1y) — XTIT],
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and
11—«

where I define
ZI(JZ) = (X ® ®p>1N —X |:<HT ® @p)lN] , Z(Z)
The traffic block sub-system reads:

Azw8w + Azzgs + Azcge = bu,

I
N
D

N

with
Asp=—-2Y, Asz=Tp - 17", Az =20 -271),
and
bz = A7,

where I define

3 3) _ v ()
zZ0=(z0), Z0, =Y wl),

4) _ 1704 (4) _ () —
Z( ) — {ZP’P}’ ZP’P = ann’ Anp’n/,p/ Anp’n’,p = @mnp/ + ®p|p/7l/ — Zﬂfm/@pmn/,
fl

nn'

5 5 !
Z(S) = {Z;/i}l Z;/i = Z/wy;/) TCan' s

and

6 6 (r")
20— (28, 7=y ult).
n

80
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E QUANTIFICATION

E.1 ESTIMATING TRADE COSTS

In this section, I present the construction of the instruments for port traffic and port capac-
ity used in the estimation of Equation (20). I need two orthogonal demand- and supply-side
shifters to deliver consistent 2SLS estimates of the traffic and capacity elasticities embedded
in transportation costs, discussed thereafter. Table E.1 demonstrate the first-stage relevance of

the instruments for both exogenous regressors.

Endogeneity of port traffic. In the short run a port’s throughput &, ; is the equilibrium quan-
tity where a downward-sloping demand curve for vessel traffic meets an upward-sloping sup-
ply curve of handling services. Unobserved shocks that shift either curve —e.g. a sudden surge
in import demand from the port’s hinterland — enter the regression error term but also move
Ep,t- As aresult, E, ; is mechanically correlated with the error term, biasing the estimated
congestion elasticity. To break this simultaneity I employ a demand-side instrument that shifts
the demand curve while leaving supply unchanged: global container traffic interacted with
each port’s share of coastal population in 1950. Historical population is predetermined with re-
spect to contemporary trade shocks, and the interaction captures world-wide booms or slumps
that raise demand proportionally across ports without affecting their marginal handling cost
schedule. I construct the following instrument for port traffic:

1 =TEU
Zpot = 2 St X Sharepopcoastal,pg,l%o- (83)

PEP _c(po)

The set P_,,,) refers to the set of global ports, excluding ports in the same country as p,. The
share of coastal population SharePop qastal,p, 1950 iS constructed using the HYDE 3.3 data, pro-
viding estimates of inhabitants in 1950 at a 5-arc-minute resolution (Klein Goldewijk, 2024).
I extract the total population in 1950 within a 20km buffer around the 621 ports used in the
trade costs estimation, and construct the share of coastal population attributed to each port.

Port traffic E;ftu is the same measure as in Section 5.1.

Endogeneity of port capacity. Port capacity K, , is a long-run choice of the port operator and
thus responds to the same latent forces that shape current trade flows. Forward-looking expan-
sions link K, positively to unobserved demand shocks, while congestion-induced upgrades

or measurement noise in the 99th-percentile traffic proxy can violate exogeneity. I therefore
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2
P

demand: the mean terrain ruggedness within 20 km of the port, constructed using the Terrain

use a long-run supply-side instrument z;, that shifts the marginal-cost curve independently of
Ruggedness Index at a 30-arc-second resolution of Amatulli et al. (2018). Rugged hinterland
topography raises the cost of transporting goods outside of the port area, leading port plan-
ners to install systematically lower capacity, yet it is fixed by geology and has no direct effect

on route-specific demand.

Table E.1: Estimation of transportation costs: first stage

Log Port Origin Traffic Log Port Origin Capacity

(1 2)
zZy 4 0.59 0.47
(0.00) (0.00)
zlzgo -0.44 -0.39
(0.00) (0.00)
Log Distance 1.14 0.95
(0.02) (0.01)
Log Cyclone Risk 0.08 0.10
(0.01) (0.00)
Observations 141,086 141,117
Adjusted R? 0.69 0.69
ng-week fixed effects v v
ny,-week fixed effects v v
pi-week fixed effects v v

Notes: This table presents the results of regressing the two endogenous regressors in Equation 20 on
exogenous intruments. The outcomes are Port Traffic, defined as weekly estimates of total TEU volumes
transiting through ports of origin of shipments, and Port Capacity, defined as the 99" percentile of daily
TEU volume at ports. Distance refers to the total route distance (land and sea). Cyclone Risk refers to
the expected windspeed at ports, as reported in the STORM data. The instruments are described in
Section E.1. Robust standard errors are clustered at the {n,, 14, p,, ps }-week level.

E.2 QUANTIFYING FUNDAMENTALS

In this section, I describe the procedure to recover the region-level fundamental productivity
shifters a,. The procedure entails inverting the equilibrium conditions of the model to pin
down fundamental productivity as a function of equilibrium objects, and solving the resulting
fixed point system fundamental productivity a, rationalize the data-driven GDP per capita
wiate ¢ {ydatat - = WA obtained from Rossi-Hansberg and Zhang (2025). From the wage

bill, bilateral trade shares and bilateral trade equilibrium conditions, I obtain the following
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inversion of bilateral trade shares to recover fundamental productivity:

e -
Cn°T,
. Wy Ly : (84)

nn'
=

ay = wnLn ¢
w2 AaCy Tan

Given a modified geography G = {N,P,L£, M, D,K,¥, W} and a set of model param-
eters {o,a,&, A1, A2, A3}, the following algorithm recovers fundamental productivity shifters of

the economy:

1. Initialize endogenous variables:

(@) {an}nen (productivity)

(b) {¢x}nen (factory-gate cost indices)
(c) {Ep}pep (port traffic)
2. Outer-loop — While distanceoguctivity > tol or distanceyqfic > tol:
(a) Based on distances €;, port capacity K, and traffic &,, update A (transportation
network)
(b) Based on A, update transportation costs 7 (transportation costs)
(c) Inner-loop (factory-gate costs) — While distancec,sts > tol:

i. Based on transportation costs T,,, region-level productivity a,, factory-gate

costs indices ¢,, and wages w4, update ¢, (factory-cost indices)

ii. Compute distancecosts = Y, [(€n)’ — (En)ifﬂ}z, with i, = iteration (inner-loop)

(d) Based on transportation costs T, region-level productivity a,, factory-gate costs

indices ¢,;, and wages wﬁ‘”“, update 71, (bilateral trade shares)

(e) Based on bilateral trade shares 7, and wages bills wﬁ”t”Ln, update X, (bilateral

trade)

(f) Based on the transportation network A and bilateral trade X,,,; , compute &, (port-
level traffic)

(g) Based on factory-gate costs indices ¢, fundamental productivity a,, transportation
costs T,,s, and wages wages bills wi*?L,,, compute a,, (productivity inversion), up to
a normalization a; =1

. » ' 2
(h) Compute distancepyoguctivity = Ly [(an)" — (a,)" 1] and

-

. N : 2 L. . .
distanceyafic = ¥ [(Ep) ' — (Ep) " *1]7, with ioy = iteration (outer loop)
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In practice, I dampen each productivity and traffic iteration using a dampening factor of 0.1,

and use the "daarem’ R package to optimize the resolution of the fixed point.

E.3 GEOGRAPHY AND MODEL FIT
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0 500 1000 1500

Cumulative Number of Ports

Figure E.1: Port selection for counterfactual
Notes: This figure plots the cumulative share of total TEU volume and vessel count by ports in the Port-

Watch data (2019-2023). Grey dots are ports which are excluded from the sample in the counterfactual
exercises.
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Figure E.2: Port congestion and model fit

Notes: This figure compares model-based port traffic to its (untargeted) counterpart in the data. I
compare log-normalized port traffic in the data — measured as average yearly total TEU volume (x-axis)
— to the log-normalized model-based estimates of port traffic (y-axis). I compare two calibrations: (i)
with the estimated congestion elasticity (baseline), or (ii) with no congestion (A, = 0). Model-based
moments are computed using the model inversion described in Appendix E.2.
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Figure E.3: Model fit — aggregate bilateral trade shares (untargeted)

Notes: This figure compares log country-level trade shares in the data — obtained from GLORIA input-
output tables — (x-axis) to their model-based counterparts (y-axis). Model-based moments are computed
using the model inversion described in Appendix E.2.
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E.4 ADDITIONAL QUANTITATIVE RESULTS

40000 1.2
Counterfactual Counterfactual
RCP 8.5 RCP 8.5
30000~ RCP 8.5 - fixed routing 0.99 RCP 8.5 - fixed routing
2 2
@ 200001 @ 0.6+
[} Q
a o
10000 031
04 0.0
-9e-05 66-05 3e-05 0e+00 36.05 20 10 0
A Welfare (bp) A Port Traffic (%)
(a) Welfare change (bp) (b) Traffic change (%)

Figure E.4: RCP8.5 with rerouting vs. without rerouting

Notes: These Panels plot the density of the change in welfare (Panel a) and port traffic (Panel b), in both
RCP8.5 counterfactuals with and without rerouting.
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E.5 INFRASTRUCTURE POLICY

E.5.1 INVESTMENT AND PORT CAPACITY

Data. I combine World Bank PPI project data on port investments with IMF PortWatch out-
comes at the port-year level. I use all Ports projects from the World Bank’s Private Participa-
tion in Infrastructure (PPI) database for 2019-2023 (World Bank, 2025). The data contain the
port identifier, the investment year, and total committed investment for all port infrastructure
projects in which the World Bank participated. For ports with multiple projects in the same
year, I sum investment amounts to obtain a portx year aggregate. I manually assign PortWatch
IDs to recipient ports by port name.

I merge the investment data with PortWatch global traffic data, aggregated at the yearly
level (2019-2024). The outcome of interest is yearly port capacity, defined as the 99t percentile
of daily TEU over the calendar year. The main sample consists of all ports located in the same
countries as the recipient ports of investments. The robustness sample consists of all ports in
the PortWatch data. I also compute quartiles of annual total TEU traffic, g, € {1,...,4}, used

to flexibly control for heterogeneous time shocks.

Empirical strategy. I estimate a staggered difference-in-differences model with continuous
treatment (amount of investment, in billion USD) to investigate how port capacity evolves
around the investment year, allowing the dynamic effect to scale with the investment amount.
Let 7, =t — t;° denote event time (years relative to the investment year, with untreated ports

assigned 7,; = 0 and I, = 0). I estimate the following model:

Ko=) Bcl{tps =k} I, +ap+ Vixq,, +€pts (85)
ke
k#—1

where K, is the 99" percentile of daily TEU traffic (capacity proxy) for port p in year t; 1y =
k} are event-time dummies; I, is the port’s total investment amount (billions USD); &, are port
fixed effects; and 1y, are year-by-TEU-quartile fixed effects that absorb flexible global shocks
with heterogeneous impacts across the traffic distribution. ; measures the change in capacity
at event time k per billion USD invested, relative to the pre-investment year. Standard errors
are clustered at the country (ISO3) level.

Figure E.5a plots the results, suggesting that USD 1 billion of investment increases port
capacity by 3,649 TEU-days for LMIC ports. This corresponds to a 27% increase in uncondi-

tional port capacity. I use this estimate to translate investment into port capacity increases in
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the policy experiment of Section 7.3. Figure E.5b confirms that the result is robust to allowing

comparisons with all global ports (within yearly traffic quartiles).

5000 ' I 5000
| mean = 3649

! mean=3533 | - - -

Coefficient
o
l &
> -
P —
:
I
|
|
i
Coefficient

-5000

-5000
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4 -2 0 2
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2 4

(a) Port capacity - LMIC ports (b) Port capacity - all ports

Figure E.5: The impact of port investment on port capacity

Notes: These Panels plot the effect of port investment on port capacity, as specified by Equation (85).
The outcome of both Panels is the 99 percentile daily TEU traffic for port p in year t. The sample in
Panel (a) consists of all ports in countries in which at least one port received a PPI investment. The
sample of Panel (b) consists of all ports in the PortWatch data. The bars show 95% confidence intervals.

Black dots indicate point estimates significant at the 5% level, gray squares at the 10% level, and empty
dots denote non-significant estimates at the 10% level.
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E.5.2 ADDITIONAL RESULTS: INFRASTRUCTURE POLICY

Welfare elasticity A Welfare elasticity (%)
B

0.01 0.02 0.03

(a) Welfare elasticity (b) A Welfare elasticity (%)
Figure E.6: EU27 welfare elasticity to port traffic

Notes: These Panels plot the social savings sufficient statistics of port capacity for EU27 welfare under
a RCP8.5 scenario. In Panel (a), I plot the port-level elasticity of EU27 welfare to port capacity. In Panel
(b), I plot the change in port-level EU27 welfare elasticities from the baseline scenario to the RCP8.5 one.
EU27 welfare elasticities are computed from the counterfactual outputs of Section 6, using the solution
method described in Appendix D.6. The color scales of both Panels are truncated at the 5% and 95"
percentiles.
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